PGM学习之二 PGM模型的分类与简介

本文介绍了概率图模型(PGM)的分类,包括参数模型、非参数模型和半参数模型,并重点讲解了PGM中的Factor概念及其在模型运算中的作用。此外,还阐述了贝叶斯网络的定义,强调了节点间的条件概率关系以及如何通过Chain Rule计算联合概率分布。
摘要由CSDN通过智能技术生成

废话:和上一次的文章确实隔了太久,希望趁暑期打酱油的时间,将之前学习的东西深入理解一下,同时尝试用Python写相关的机器学习代码。

一 PGM模型的分类


    通过上一篇文章的介绍,相信大家对PGM的定义和大致应用场景有了粗略的了解。那么接下来我们来深入了解下PGM。
首先要介绍的是Probabilistic models(概率模型),常用来描述不同的随机变量之前的关系,主要针对变量或变量间的相互不确定性的概率关系建模。总的来说,概率模型分为两类:

     一类是参数模型-可以用有限个参数进行准确定义

参数模型是一组由有限维参数构成的分布集合\mathcal{P}=\{\mathbb{P}_{\theta} : \theta \in \Theta\}。其中\theta 是参数,而\Theta \subseteq \mathbb{R}^d是其可行欧几里得子空间。概率模型可被用来描述一组可产生已知采样数据的分布集合。例如,假设数据产生于唯一参数的高斯分布,则我们可假设该概率模型为\mathcal{P}=\{\mathbb{P}(x; \mu, \sigma) = \frac{1}{\sqrt{2 \pi} \sigma} \exp\left\{ -\frac{1}{2\sigma^2}(x-\mu)^2\right\} : \mu \in \mathbb{R}, \sigma > 0\}

二类是非参数模型-即无法采用有限参数进行准确定义的模型

无参数模型则是一组由无限维参数构成的概率分布函数集合,可被表示为\mathcal{P}=\{\text{all distributions}\}相比于无参数模型和参数模型,半参数模型也由无限维参数构成,但其在分布函数空间内并不紧密。例如,一组混叠的高斯模型。确切的说,如果d是参数的维度,n是数据点的大小,如果随着

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值