PGM课程笔记
萝卜羊
Imaging and camera software engineering / 机器视觉与机器学习 / 目标检测与识别 / 图像质量评价 / 承接各种图像处理相关项目。
展开
-
PGM学习之五 贝叶斯网络
本文的主题是“贝叶斯网络”(Bayesian Network) 贝叶斯网络是一个典型的图模型,它对感兴趣变量(variables of interest)及变量之间的关系(relationships)进行建模。当将贝叶斯模型与统计技术一起使用时,这种图模型分析数据具有如下几个优势:(1) 贝叶斯学习能够方便的处理不完全数据。例如考虑具有相关关系的多个输入变量的分类或原创 2013-07-31 12:38:27 · 13698 阅读 · 2 评论 -
PGM学习之一
一 课程基本信息 本课程是由Prof.Daphne Koller主讲,同时得到了Prof. Kevin Murphy的支持,在coursera上公开传播。在本课程中,你将学习到PGM(Probabilistic Graphical Models)表示的基本理论,以及如何利用人类自身的知识和机器学习技术来构建PGM;还将学习到使用PGM算法来对有限、带噪声的证据提取结论原创 2012-10-28 11:58:12 · 11463 阅读 · 3 评论 -
PGM学习之六 从有向无环图(DAG)到贝叶斯网络(Bayesian Networks)
实习:1. 方正 创新工程中心 140/day2. NEC中国原创 2013-07-31 20:27:10 · 13150 阅读 · 3 评论 -
PGM学习之三 朴素贝叶斯分类器(Naive Bayes Classifier)
介绍朴素贝叶斯分类器的文章已经很多了。本文的目的是通过基本概念和微小实例的复述,巩固对于朴素贝叶斯分类器的理解。一 朴素贝叶斯分类器基础回顾 朴素贝叶斯分类器基于贝叶斯定义,特别适用于输入数据维数较高的情况。虽然朴素贝叶斯分类器很简单,但是它确经常比一些复杂的方法表现还好。原创 2013-07-25 17:07:14 · 10635 阅读 · 5 评论 -
PGM学习之四 Factor,Reasoning
通过上一篇文章的介绍,我们已经基本了解了:Factor是组成PGM模型的基本要素;Factor之间的运算和推理是构建高维复杂PGM模型的基础。那么接下来,我们将重点理解,Factor之间的推理(Reasoning Patterns)。Factor之间的推理分为以下几类:1. Causal Reasoning , 因果推理;2. Evidential Reasoning,证据推理;3原创 2013-07-29 17:33:00 · 5247 阅读 · 0 评论 -
PGM学习之二 PGM模型的分类与简介
废话:和上一次的文章确实隔了太久,希望趁暑期打酱油的时间,将之前学习的东西深入理解一下,同时尝试用Python写相关的机器学习代码。通过上一篇文章的介绍,相信大家对PGM的定义和大致应用场景有了粗略的了解。那么接下来我们来深入了解下PGM。首先要介绍的是Probabilistic models(概率模型),常用来描述不同的随机变量之前的关系,主要针对变量或变量间的相互不确定性的概率原创 2013-07-15 21:54:50 · 8726 阅读 · 4 评论 -
PGM学习之七 MRF,马尔科夫随机场
之前自己做实验也用过MRF(Markov Random Filed,马尔科夫随机场),基本原理理解,但是很多细节的地方都不求甚解。恰好趁学习PGM的时间,整理一下在机器视觉与图像分析领域的MRF的相关知识。 在机器视觉领域,一个图像分析问题通常被定义为建模问题,图像分析的过程就是从计算的观点来求解模型的过程。一个模型除了可以表达成图形的形式外,通常使用一个目标函数来表示,因此建原创 2013-08-02 22:58:26 · 99777 阅读 · 37 评论