PGM学习之三 朴素贝叶斯分类器(Naive Bayes Classifier)

本文深入浅出地介绍了朴素贝叶斯分类器的基础知识,包括贝叶斯定理、先验概率和似然的概念,并通过实例展示了如何计算不同类别的概率。在实际应用中,朴素贝叶斯分类器因其简洁高效,在高维数据场景下展现出良好性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

         介绍朴素贝叶斯分类器的文章已经很多了。本文的目的是通过基本概念和微小实例的复述,巩固对于朴素贝叶斯分类器的理解。

一 朴素贝叶斯分类器基础回顾

        朴素贝叶斯分类器基于贝叶斯定义,特别适用于输入数据维数较高的情况。虽然朴素贝叶斯分类器很简单,但是它确经常比一些复杂的方法表现还好。

                                                           

       为了简单阐述贝叶斯分类的基本原理,我们使用上图所示的例子来说明。作为先验,我们知道一个球要么是红球要么是绿球。我们的任务是当有新的输入(New Cases)时,我们给出新输入的物体的类别(红或者绿)。这是贝叶斯分类器的典型应用-Label,即给出物体标记。

        从图中我们 还看到,绿球的数量明显比红球大,那么我们有理由认为:一个新输入(New case)更有可能是绿球。假如绿球的数量是红球的二倍,那么对于一个新输入,它是绿球的概率是它是红球的概率的二倍。

        因此,我们知道:

                                                

         假设一共有60个球,其中40个是绿球,20个是红球,那么类别的先验概率为:

                                                

                                              

       有了先验概率之后,我们就可以准备对新来的物体(New Object),图中白色圈所示,进行分类。如果要取得比较准确的分类结果,那么我们猜测它是绿球比较保险,也就是新物体与绿球的likelihood比与红球的likelihood更大。那么我们接下来衡量这种相似性-likelihood(似然)。

                                               

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值