题目大意:给定n个物品,分给m个人,每个人拿到wi个礼物,问方案数mod P P不一定为质数
首先我们把剩下的礼物也分给一个人 答案明显不变 w[++m]=n-w1-w2-...-wm
然后就会很方便地得到公式:
ans=C(n,w1)*C(n-w1,w2)*C(n-w1-w2,w3)*...*C(n-w1-w2-...-w_(m-1),wm) mod P
=n!/w1!/w2!/.../wm! mod P
然后p不是质数 我们把P分解 令P=∏pi^ai
我们分别处理,可以得到一次同余方程组ans%pi^ai=lefti,用中国剩余定理合并一下即可。
然后对于每个pi^ai,我们进行以下处理:
将分子和分母化为x*pi^y的形式
然后分母的x部分与pi互质,可以求逆元,分子分母的y部分直接相减即可
然后我们处理阶乘
以19为例,将19!化为x*pi^y的形式,其中pi=3,ai=2 则有
19!%9=(1*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18*19) %9
=(1*2*4*5*7*8*10*11*13*14*16*17*19)*3^6*(1*2*3*4*5*6) %9
式子的左半部分是不为3的倍数的数,存在长度为p^a的循环节 求出一个循环节 快速幂处理 然后处理剩余部分
右半部分是6!%9 递归处理即可
我这题解写的真是冷静。。。这题还真TM让人冷静不下来啊-0-