BZOJ 2142 礼物 组合数学+数论

该博客探讨了BZOJ 2142问题,涉及如何在给定的n个物品中,按特定数量分给m个人的方案数。博主通过添加剩余礼物到一人,简化问题,得到组合公式,并利用中国剩余定理解决非质数模的情况。此外,还详细解释了如何处理阶乘和模运算,包括寻找循环节和递归处理部分。
摘要由CSDN通过智能技术生成

题目大意:给定n个物品,分给m个人,每个人拿到wi个礼物,问方案数mod P P不一定为质数

首先我们把剩下的礼物也分给一个人 答案明显不变 w[++m]=n-w1-w2-...-wm

然后就会很方便地得到公式:

ans=C(n,w1)*C(n-w1,w2)*C(n-w1-w2,w3)*...*C(n-w1-w2-...-w_(m-1),wm) mod P

       =n!/w1!/w2!/.../wm! mod P

然后p不是质数 我们把P分解 令P=∏pi^ai

我们分别处理,可以得到一次同余方程组ans%pi^ai=lefti,用中国剩余定理合并一下即可。

然后对于每个pi^ai,我们进行以下处理:

将分子和分母化为x*pi^y的形式

然后分母的x部分与pi互质,可以求逆元,分子分母的y部分直接相减即可

然后我们处理阶乘

以19为例,将19!化为x*pi^y的形式,其中pi=3,ai=2 则有

19!%9=(1*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18*19) %9

           =(1*2*4*5*7*8*10*11*13*14*16*17*19)*3^6*(1*2*3*4*5*6) %9

式子的左半部分是不为3的倍数的数,存在长度为p^a的循环节 求出一个循环节 快速幂处理 然后处理剩余部分

右半部分是6!%9 递归处理即可

我这题解写的真是冷静。。。这题还真TM让人冷静不下来啊-0-


                
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值