题目大意:给定一张图,从1开始随便走最后回到1,有一次机会可以反向沿着某条边走一次,求最多能经过多少个点
显然如果没有反向的机会的话答案就是1号节点所在强连通分量的大小
现在有了这个机会 那么将某条边反向后 缩点之后的图形成了一个包含1号节点所在强连通分量的环 这样才能使答案增加
将这个环从反向的边和1号节点所在强连通分量处断开 发现这个环被拆成了两条链
一条从1出发,一条指向1
因此缩点后利用拓扑排序分别求出正图和反图中1号节点所在强连通分量到每个强连通分量的最长链
然后枚举每条边反转更新答案即可
时间复杂度O(n+m)
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 100100
using namespace std;
int n,m,ans;
namespace Origin_Graph{
struct abcd{
int to,next;
}table[M];
int head[M],tot;
int belong[M],size[M],cnt;
bool v[M];
void Add(int x,int y)
{
table[++tot].to=y;
table[tot].next=head[x];
head[x]=tot;
}
void Tarjan(int x)
{
static int dpt[M],low[M],T;
static int stack[M],top;
int i;
dpt[x]=low[x]=++T;
stack[++top]=x;
for(i=head[x];i;i=table[i].next)
{