BZOJ 3887 Usaco2015 Jan Grass Cownoisseur Tarjan+拓扑排序

该博客介绍了BZOJ 3887题目的解决方案,利用Tarjan算法和拓扑排序在给定图中寻找从1号节点出发,经过最多节点的路径。当允许一次反向边操作时,通过改变边的方向构造环并拆分为两条链,分别求出最长链以更新答案。最终算法的时间复杂度为O(n+m)。
摘要由CSDN通过智能技术生成

题目大意:给定一张图,从1开始随便走最后回到1,有一次机会可以反向沿着某条边走一次,求最多能经过多少个点

显然如果没有反向的机会的话答案就是1号节点所在强连通分量的大小

现在有了这个机会 那么将某条边反向后 缩点之后的图形成了一个包含1号节点所在强连通分量的环 这样才能使答案增加

将这个环从反向的边和1号节点所在强连通分量处断开 发现这个环被拆成了两条链

一条从1出发,一条指向1

因此缩点后利用拓扑排序分别求出正图和反图中1号节点所在强连通分量到每个强连通分量的最长链

然后枚举每条边反转更新答案即可

时间复杂度O(n+m)

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 100100
using namespace std;
int n,m,ans;
namespace Origin_Graph{
	struct abcd{
		int to,next;
	}table[M];
	int head[M],tot;
	int belong[M],size[M],cnt;
	bool v[M];
	void Add(int x,int y)
	{
		table[++tot].to=y;
		table[tot].next=head[x];
		head[x]=tot;
	}
	void Tarjan(int x)
	{
		static int dpt[M],low[M],T;
		static int stack[M],top;
		int i;
		dpt[x]=low[x]=++T;
		stack[++top]=x;
		for(i=head[x];i;i=table[i].next)
		{
好的,这是一道经典的单调栈问题。题目描述如下: 有 $n$ 个湖,第 $i$ 个湖有一个高度 $h_i$。现在要在这些湖之间挖一些沟渠,使得相邻的湖之间的高度差不超过 $d$。请问最少需要挖多少个沟渠。 这是一道单调栈的典型应用题。我们可以从左到右遍历湖的高度,同时使用一个单调栈来维护之前所有湖的高度。具体来说,我们维护一个单调递增的栈,栈中存储的是湖的下标。假设当前遍历到第 $i$ 个湖,我们需要在之前的湖中找到一个高度最接近 $h_i$ 且高度不超过 $h_i-d$ 的湖,然后从这个湖到第 $i$ 个湖之间挖一条沟渠。具体的实现可以参考下面的代码: ```c++ #include <cstdio> #include <stack> using namespace std; const int N = 100010; int n, d; int h[N]; stack<int> stk; int main() { scanf("%d%d", &n, &d); for (int i = 1; i <= n; i++) scanf("%d", &h[i]); int ans = 0; for (int i = 1; i <= n; i++) { while (!stk.empty() && h[stk.top()] <= h[i] - d) stk.pop(); if (!stk.empty()) ans++; stk.push(i); } printf("%d\n", ans); return 0; } ``` 这里的关键在于,当我们遍历到第 $i$ 个湖时,所有比 $h_i-d$ 小的湖都可以被舍弃,因为它们不可能成为第 $i$ 个湖的前驱。因此,我们可以不断地从栈顶弹出比 $h_i-d$ 小的湖,直到栈顶的湖高度大于 $h_i-d$,然后将 $i$ 入栈。这样,栈中存储的就是当前 $h_i$ 左边所有高度不超过 $h_i-d$ 的湖,栈顶元素就是最靠近 $h_i$ 且高度不超过 $h_i-d$ 的湖。如果栈不为空,说明找到了一个前驱湖,答案加一。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值