BZOJ 4147 AMPPZ2014 Euclidean Nim 博弈论+数论

42 篇文章 0 订阅
8 篇文章 0 订阅

题目大意:给定 n 个石子,两人轮流操作,规则如下:
轮到先手操作时:若石子数<p,那么只能添加 p 个石子,否则可以拿走p的倍数个石子
轮到后手操作时:若石子数 <q <script type="math/tex" id="MathJax-Element-5"> q 个石子,否则可以拿走q的倍数个石子
拿走所有石子的人胜利,问先手是否必胜,或输出游戏会永远进行下去

d=gcd(p,q) ,那么若 d 不能整除n,游戏将会永远进行下去
否则将 p/=d,q/=d,n/=d ,显然不影响结果
然后我们讨论:

状态1.若 p=q ,先手必胜
不用解释吧= =

状态2.若 p>q,n<p ,那么先手必败
证明:
显然先手的操作只能是添加 p 个石子,然后后手只需要每次将石子数x变为 x mod q ,石子数就又 <p <script type="math/tex" id="MathJax-Element-17"> 故先手永远不能取石子,而由于 p,q 互质,因此总有一时刻 n+kp0( mod q) ,故先手必败

状态3.若 p>q,np ,则先手必胜当且仅当 n mod p<q (pq)|(n mod p)
证明:
显然如果先手操作后石子数 xq ,那么后手只需要将石子数变为 x mod q ,就转化成了状态2,先手必败
因此先手必胜只有可能如此操作:
先手取成 n mod p -> 后手 +q -> 先手 p -> 后手 +q -> …
那么一轮下来,石子数 x 变为了原来的x(pq)
故当 (pq)|(n mod p) n mod p<q 时先手必胜

状态4:若 p<q,n<p ,那么先手第一次操作只能是 +p
那么如果 n+p<q ,则后手只能 +q ,先手  mod p 后转化为状态2,先手必胜
否则转化为状态3

状态5:若 p<q,np ,那么先手将石子数取为 n mod p 后转化为状态2,先手必胜

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
int n,p,q;
bool Calculate(int n,int p,int q)
{
    return n%p<q && n%p%(p-q)==0;
}
int main()
{
    int T;
    for(cin>>T;T;T--)
    {
        scanf("%d%d%d",&p,&q,&n);
        int gcd=__gcd(p,q);
        if(n%gcd)
        {
            puts("R");
            continue;
        }
        p/=gcd;q/=gcd;n/=gcd;
        if(p==q)
            puts("E");
        else if(p>q)
        {
            if(n<p) puts("P");
            else puts(Calculate(n,p,q)?"E":"P");
        }
        else
        {
            if(n<p)
            {
                if(n+p<q) puts("E");
                else puts(Calculate(n+p,q,p)?"P":"E");
            }
            else puts("E");
        }
    }
    return 0;
}
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值