[Cqoi 2013] bzoj3106 棋盘游戏 [博弈论]

29 篇文章 0 订阅
5 篇文章 0 订阅

Description:
两个人移动棋子,第一个人每次可以走一格,第二个人每次可以走一格或两格。希望最大化吃掉对方的时间。


Solution:
对抗搜索。
dp[o][s][a][b][c][d] d p [ o ] [ s ] [ a ] [ b ] [ c ] [ d ] 表示当前是 o o 走,走了s步,分别的坐标。
然后先手肯定会被后手吃掉,那么先手尽量希望拖延时间,对答案取 max m a x ,后手取 min m i n


#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int dx[] = {-1, 1, 0, 0}, dy[] = {0, 0, -1, 1};
int n, r1, c1, r2, c2;
int dp[2][61][21][21][21][21];
bool D(int a) {
    return a > 0 && a <= n;
}
int dfs(int o, int s, int a, int b, int c, int d) {
    if(s > 3 * n) {
        return 0x3f3f3f3f;
    }
    if(a == c && b == d) {
        return !o ? 0 : 0x3f3f3f3f;
    }
    if(dp[o][s][a][b][c][d] != -1) {
        return dp[o][s][a][b][c][d];
    }
    int ans = !o ? 0 : 0x3f3f3f3f;
    for(int i = 0; i < 4; ++i) {
        if(o) {
            if(D(c + dx[i]) && D(d + dy[i])) {
                ans = min(ans, dfs(o ^ 1, s + 1, a, b, c + dx[i], d + dy[i]));
            }
            if(D(c + 2 * dx[i]) && D(d + 2 * dy[i])) {
                ans = min(ans, dfs(o ^ 1, s + 1, a, b, c + 2 * dx[i], d + 2 * dy[i]));
            }
        } else {
            if(D(a + dx[i]) && D(b + dy[i])) {
                ans = max(ans, dfs(o ^ 1, s + 1, a + dx[i], b + dy[i], c, d));
            }
        }
    }
    return dp[o][s][a][b][c][d] = ++ans;
}
int main() {
    memset(dp, -1, sizeof(dp));
    scanf("%d%d%d%d%d", &n, &r1, &c1, &r2, &c2);
    if(abs(r1 - r2) + abs(c1 - c2) <= 1) {
        return puts("WHITE 1"), 0;
    } else {
        printf("BLACK %d\n", dfs(0, 0, r1, c1, r2, c2));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值