Description:
两个人移动棋子,第一个人每次可以走一格,第二个人每次可以走一格或两格。希望最大化吃掉对方的时间。
Solution:
对抗搜索。
设
dp[o][s][a][b][c][d]
d
p
[
o
]
[
s
]
[
a
]
[
b
]
[
c
]
[
d
]
表示当前是
o
o
走,走了步,分别的坐标。
然后先手肯定会被后手吃掉,那么先手尽量希望拖延时间,对答案取
max
m
a
x
,后手取
min
m
i
n
。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int dx[] = {-1, 1, 0, 0}, dy[] = {0, 0, -1, 1};
int n, r1, c1, r2, c2;
int dp[2][61][21][21][21][21];
bool D(int a) {
return a > 0 && a <= n;
}
int dfs(int o, int s, int a, int b, int c, int d) {
if(s > 3 * n) {
return 0x3f3f3f3f;
}
if(a == c && b == d) {
return !o ? 0 : 0x3f3f3f3f;
}
if(dp[o][s][a][b][c][d] != -1) {
return dp[o][s][a][b][c][d];
}
int ans = !o ? 0 : 0x3f3f3f3f;
for(int i = 0; i < 4; ++i) {
if(o) {
if(D(c + dx[i]) && D(d + dy[i])) {
ans = min(ans, dfs(o ^ 1, s + 1, a, b, c + dx[i], d + dy[i]));
}
if(D(c + 2 * dx[i]) && D(d + 2 * dy[i])) {
ans = min(ans, dfs(o ^ 1, s + 1, a, b, c + 2 * dx[i], d + 2 * dy[i]));
}
} else {
if(D(a + dx[i]) && D(b + dy[i])) {
ans = max(ans, dfs(o ^ 1, s + 1, a + dx[i], b + dy[i], c, d));
}
}
}
return dp[o][s][a][b][c][d] = ++ans;
}
int main() {
memset(dp, -1, sizeof(dp));
scanf("%d%d%d%d%d", &n, &r1, &c1, &r2, &c2);
if(abs(r1 - r2) + abs(c1 - c2) <= 1) {
return puts("WHITE 1"), 0;
} else {
printf("BLACK %d\n", dfs(0, 0, r1, c1, r2, c2));
}
return 0;
}