题目大意:给定 n(n≤109) ,求 ∑ni=1∑nj=1d(ij)
推错式子害死人。。。
由
d|ij
等价于
dgcd(i,d)|j
可得
∑ni=1∑nj=1d(ij)
=∑ni=1∑n2d=1⌊n∗gcd(i,d)d⌋
=∑nd=1∑⌊nd⌋i=1∑⌊n2d⌋j=1⌊nj⌋[gcd(i,j)=1]
=∑nd=1∑⌊nd⌋i=1∑nj=1⌊nj⌋[gcd(i,j)=1]
=∑nd=1∑⌊nd⌋i=1∑nj=1⌊nj⌋∑k|i,k|jμ(k)
=∑nk=1μ(k)(∑⌊nk⌋d=1⌊nkd⌋)2
O(n√)
枚举
⌊nk⌋
μ(k)
的部分同BZOJ3944
后面那个平方里面的东西每次
O(nk−−√)
求 时间复杂度
O(n1−−√)+O(n2−−√)+...+O(nn√−−−√)=O(n34)
总时间复杂度
O(n34)
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 5700000
#define MOD 1000000007
using namespace std;
int n,S;
int Get_Sum1(int n)
{
int i,last,re=0;
for(i=1;i<=n;i=last+1)
{
last=n/(n/i);
(re+=(long long)(last-i+1)*(n/i)%MOD)%=MOD;
}
return re;
}
int _sum2[M];
int mu[M],prime[M],tot;
bool not_prime[M];
void Linear_Shaker()
{
int i,j;
mu[1]=1;
for(i=2;i<=S;i++)
{
if(!not_prime[i])
{
mu[i]=-1;
prime[++tot]=i;
}
for(j=1;prime[j]*i<=S;j++)
{
not_prime[prime[j]*i]=true;
if(i%prime[j]==0)
{
mu[prime[j]*i]=0;
break;
}
mu[prime[j]*i]=-mu[i];
}
}
}
int Get_Sum2(int x)
{
if(x<=S) return mu[x];
return _sum2[n/x];
}
void Pretreatment()
{
int i,j,last;
Linear_Shaker();
for(i=1;i<=S;i++)
mu[i]+=mu[i-1];
for(i=1;n/i>S;i++);
for(j=i;j;j--)
{
int n=::n/j;
_sum2[j]=1;
for(i=2;i<=n;i=last+1)
{
last=n/(n/i);
(_sum2[j]-=(long long)(last-i+1)*Get_Sum2(n/i)%MOD)%=MOD;
}
}
}
int main()
{
int i,last,ans=0;
cin>>n;S=ceil(pow(n,0.75)-1e-7)+1e-7;
Pretreatment();
for(i=1;i<=n;i=last+1)
{
last=n/(n/i);
long long temp=Get_Sum1(n/i);
(ans+=(Get_Sum2(last)-Get_Sum2(i-1))*temp%MOD*temp%MOD)%=MOD;
}
cout<<(ans+MOD)%MOD<<endl;
return 0;
}