Query Recommendation using Query Log in Search Engines

原创 2012年03月31日 20:02:40

  1. 背景:

论文作者是Ricardo baeza-Yates,此人是率先研究关键词推荐的人物之一。当时还在 University of Chile 的Web Research 中心,后来去了yahoo研究院,领导在 Barcelona, Spain and Santiago的yahoo研究院。Ricardo baeza的主页:http://www.dcc.uchile.cl/~rbaeza/

2 论文思想:

这篇论文的思想其实很简单、很基础。用户搜索了一个Query,然后点击结果中的链接,那么就可以构成一个Query到URL的向量。这样就可以计算Query之间的相关性。


3 相似性:

先用term-weight的向量来表示每个Query。

把Query对应的URL的单词作为term。q[i]表示词典中的一个单词,这个q[i]就是向量中的一个维度。这个和BM25算法(Query-Doc相关性计算)中的语素是不一样的,那里是query的分词。

然后直接用cosin函数作为相似性的衡量标准。


4 实验数据:

使用Todocl 搜索引擎15天的log。22190个点击;18527个URL。这里每个Query的点击数量相当少。

聚类方法:k-means

5 评测

实验室的人做review评测。

不同的方法;召回10个结果的准确率都很低,这可能和日志数据比较少有关。

在召回2-5个的时候,准确率差异很大。Support算法最好,有明显的效果。


相关论文:

《The query-flow graph: model and applications》

 Random Walks on the Click Graph


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Agglomerative clustering of a search engine query log (论文笔记)

最近看了一下Agglomerative clustering of a search engine query log这篇论文,有一定的shou

Parallel FP-Growth for Query Recommendation翻译

近期又重新看起关联规则相关内容,看了自己写的关联规则源码分析,发现第二部分自己写的很不清楚,因为当时自己也不甚理解该算法。现在重新阅读此算法的相关论文,并做点翻译工作,仅供以后参考(只翻译了部分)。原...

6 methods to control what and how your content appears in search engines

http://www.antezeta.com/blog/avoid-search-engine-indexing http://www.antezeta.com/blog/search-engine...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)