1074. 宇宙无敌加法器(20)
时间限制
400 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
作者
CHEN, Yue
地球人习惯使用十进制数,并且默认一个数字的每一位都是十进制的。而在PAT星人开挂的世界里,每个数字的每一位都是不同进制的,这种神奇的数字称为“PAT数”。每个PAT星人都必须熟记各位数字的进制表,例如“……0527”就表示最低位是7进制数、第2位是2进制数、第3位是5进制数、第4位是10进制数,等等。每一位的进制d或者是0(表示十进制)、或者是[2,9]区间内的整数。理论上这个进制表应该包含无穷多位数字,但从实际应用出发,PAT星人通常只需要记住前20位就够用了,以后各位默认为10进制。
在这样的数字系统中,即使是简单的加法运算也变得不简单。例如对应进制表“0527”,该如何计算“6203+415”呢?我们得首先计算最低位:3+5=8;因为最低位是7进制的,所以我们得到1和1个进位。第2位是:0+1+1(进位)=2;因为此位是2进制的,所以我们得到0和1个进位。第3位是:2+4+1(进位)=7;因为此位是5进制的,所以我们得到2和1个进位。第4位是:6+1(进位)=7;因为此位是10进制的,所以我们就得到7。最后我们得到:6203+415=7201。
输入格式:
输入首先在第一行给出一个N位的进制表(0 < N <=20),以回车结束。 随后两行,每行给出一个不超过N位的正的PAT数。
输出格式:
在一行中输出两个PAT数之和。
输入样例:30527 06203 415输出样例:
7201
/*
题目难度不大,但模拟起来还是闹壳疼,由于相加的两个数长度可能不一样,将会导致要进行很多判断,
所以我们可以在短的数高位加上0,任何数加上0结果不变。使得他们的长度变得一样,接下来就应该
讨论进制表的长度和相加数的长度问题了,如果相加数更长就很好解决了,和进制表匹配上的位用进制表的进制,
其他的就是十进制。进制表进制中的0代表10进制,需要特别注意,千万别除以0。我们可以对所有输入进行一个预处理
将字符转化为整形数,顺便把进制表中的0转化为10.
其他的看代码,代码中有具体解释。
*/
#include<stdio.h>
#include<string.h>
int max(int a,int b){
return a>b?a:b;
}
int main(){
int final[1000],a[30],b[30],c[30];//分别存储最后结果预处理数据
int j,len = 0,i,len1 = 0,len2 = 0,len3 = 0,radix = 0,jin = 0,lens;
int flag1 = 0,flag2 = 0;
char str[30],str1[30],str2[30];
// freopen("input.txt","r",stdin);
scanf("%s",str);
for(i = 0;str[i] != '\0';i++)
{
len1++;//进制表长度
if(str[i] == '0'){
a[i] = 10;//及时把0转化为10
}else{
a[i] = str[i] - '0';//转化为整形数
}
}
scanf("%s",str1);
len2 = strlen(str1);
scanf("%s",str2);
len3 = strlen(str2);
lens = max(len2,len3);
for(i = 0;i < lens-len2;i++){
b[i] = 0;
}
for(j = 0;j+i < lens;j++){
b[j+i] = str1[j]-'0';
if(str1[j]-'0'>0){
flag1 = 1;//判断是否为0,为0输出药品额外考虑
}
}
for(i = 0;i < lens-len3;i++){
c[i] = 0;
}
for(j = 0;j+i < lens;j++){
c[j+i] = str2[j]-'0';
if(str2[j]-'0'>0){
flag2 = 1;//判断是否为0,为0输出药品额外考虑
}
}
len1--,lens--;
if(lens >= len1){
while(len1>=0&&lens>=0){
radix = a[len1--];
final[len++] = (jin+b[lens]+c[lens])%radix;
jin = (jin+b[lens]+c[lens--])/radix;
}
if(lens == len1){
while(jin != 0){//注意是while,jin可能等于10
final[len++] = jin%10;
jin = jin/10;
}
}else{
while(lens>=0){
final[len++] = (jin+b[lens]+c[lens])%10;
jin = (jin+b[lens]+c[lens--])/radix;
}
while(jin != 0){//注意是while,jin可能等于10
final[len++] = jin%10;
jin = jin/10;
}
}
}else{
while(len1>=0&&lens>=0){
radix = a[len1--];
final[len++] = (jin+b[lens]+c[lens])%radix;
jin = (jin+b[len]+c[lens--])/radix;
}
while(len1>=0&&jin>0){//注意是while,jin可能要进行多次向前处理,比如jin = 9,进制表后面还剩22222
radix = a[len1--];
final[len++] = jin%radix;
jin = jin/radix;
}
if(len1<0&&jin>0){
while(jin != 0){//注意是while,jin可能等于10
final[len++] = jin%10;
jin = jin/10;
}
}
}
if(flag1 == 0&&flag2 == 0){
printf("0\n");
}
int flag = 0;
for(i = len-1;i>=0;i--){
if(flag == 0){//注意:高位加上0后可能导致计算的结果高位也有0,要把高位的0去掉
if(final[i] != 0){
flag = 1;
}
}
if(flag == 1)
printf("%d",final[i]);
}
return 0;
}