地球人习惯使用十进制数,并且默认一个数字的每一位都是十进制的。而在PAT星人开挂的世界里,每个数字的每一位都是不同进制的,这种神奇的数字称为“PAT数”。每个PAT星人都必须熟记各位数字的进制表,例如“……0527”就表示最低位是7进制数、第2位是2进制数、第3位是5进制数、第4位是10进制数,等等。每一位的进制d或者是0(表示十进制)、或者是[2,9]区间内的整数。理论上这个进制表应该包含无穷多位数字,但从实际应用出发,PAT星人通常只需要记住前20位就够用了,以后各位默认为10进制。
在这样的数字系统中,即使是简单的加法运算也变得不简单。例如对应进制表“0527”,该如何计算“6203+415”呢?我们得首先计算最低位:3+5=8;因为最低位是7进制的,所以我们得到1和1个进位。第2位是:0+1+1(进位)=2;因为此位是2进制的,所以我们得到0和1个进位。第3位是:2+4+1(进位)=7;因为此位是5进制的,所以我们得到2和1个进位。第4位是:6+1(进位)=7;因为此位是10进制的,所以我们就得到7。最后我们得到:6203+415=7201。
输入格式:
输入首先在第一行给出一个N位的进制表(0 < N <=20),以回车结束。 随后两行,每行给出一个不超过N位的正的PAT数。
输出格式:
在一行中输出两个PAT数之和。
输入样例:30527
06203
415
输出样例:
7201
============================================================================
思路:
就是对应数位相加,得到的结果取余进制就是该位最终结果,相除后向下取整就是进位。
但本题显然需要用字符串处理数字进行模拟加法,特别注意不一定前后哪个数字长,故需要做预处理,我的处理方法是在短的那个数字前补0。当然,这样做的话还要记得最终结果去除前导0.
★特别注意,本题有坑!
要考虑和为0的情况,要考虑和为0的情况,要考虑和为0的情况!
但是俩正数相加怎么可能是0,显然这样的样例是有问题的。
#include <iostream>
#include <iomanip>
#include <stdio.h>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <cctype>
#include <sstream>
#include <map>
#include <set>
#include <vector>
#include <queue>
#include <stack>
using namespace std;
int main()
{
string k,a,b;
stringstream ss;
cin>>k>>a>>b;
int i,j,m,lena,lenb,lenk,flag=0;
lenk = k.size();
lena = a.size();
lenb = b.size();
if(lena < lenb)
{
swap(a,b);
swap(lena,lenb);
}
j = lenb-1;
m = lenk-1;
for(i=lena-1;i>=0;i--)
{
int temp,tn,jin;
if(j >= 0)
{
temp = b[j]-'0';
j--;
}
else
temp = 0;
temp += flag;
tn = a[i]-'0';
jin = k[m]-'0';
if(jin == 0)
jin = 10;
tn += temp;
flag = tn/jin;
tn %= jin;
a[i] = (char)(tn + '0');
m--;
}
if(flag > 0)
a = (char)(flag+'0')+a;
int fuck=0;
ss<<a;
ss>>fuck;
if(fuck == 0)
{
cout<<"0"<<endl;
return 0;
}
else
{
for(i=0;a[i]=='0';i++)
a.erase(i,1);
cout<<a<<endl;
}
return 0;
}