贪心法——部分背包问题

原创 2016年05月31日 21:16:30

贪心法——部分背包问题

部分背包问题。有n个物体,第i个物体的重量为wi,价值为vi。在总重量不超过C的情况下让总价值尽量高。每一个物体都可以只取走一部分,价值和重量按比例计算。

和最优转载问题一样,这题也可以用贪心法解决。但是这题有两个因素,重量和价值,所以应该综合考虑两个因素。

直观的贪心策略是:优先拿性价比高的,也就是viwi大的,直到重量恰好为C

由于可以拿部分,因此一定能保证重量恰好为C(除非n个物体总重量不足C),并且除了拿的最后一个物体可能是拿部分以外,其他拿的都是拿整个。

部分背包问题算法实现

// 物体类型
struct Matter {
    // 重量
    float w;
    // 价值
    float v;
    // 从大到小排序
    bool operator < (const Matter &m) const {
        return (v / w) > (m.v / m.w);
    }
};

// 贪心法
// 部分背包问题
void optionalLoad(Matter *m, int n, float C) {
    sort(m, m + n);
    float retain = C;
    float sumValue = 0;
    int i;
    for(i = 0; i < n; i++) {
        if(m[i].w <= retain) {
            cout << "第" << i + 1 << "个放入背包的重量为:" << m[i].w << "\t价值为:" << m[i].v << endl;
            retain -= m[i].w;
            sumValue += m[i].v;
        } else {
            if(retain != 0) {
                // 最后一个能放入重量的价值
                float retainValue = m[i].v / m[i].w * retain;
                cout << "第" << i + 1 << "个放入背包的重量为:" << retain << "\t价值为:" << retainValue << endl;
                sumValue += retainValue;
            }
            break;
        }
    }
    cout << "总价值为:" << sumValue << endl << endl;
}

测试主程序

#include <iostream>
#include <algorithm>

using namespace std;

// 物体类型
struct Matter {
    // 重量
    float w;
    // 价值
    float v;
    // 从大到小排序
    bool operator < (const Matter &m) const {
        return (v / w) > (m.v / m.w);
    }
};

// 贪心法
// 部分背包问题
void optionalLoad(Matter *m, int n, float C) {
    sort(m, m + n);
    float retain = C;
    float sumValue = 0;
    int i;
    for(i = 0; i < n; i++) {
        if(m[i].w <= retain) {
            cout << "第" << i + 1 << "个放入背包的重量为:" << m[i].w << "\t价值为:" << m[i].v << endl;
            retain -= m[i].w;
            sumValue += m[i].v;
        } else {
            if(retain != 0) {
                // 最后一个能放入重量的价值
                float retainValue = m[i].v / m[i].w * retain;
                cout << "第" << i + 1 << "个放入背包的重量为:" << retain << "\t价值为:" << retainValue << endl;
                sumValue += retainValue;
            }
            break;
        }
    }
    cout << "总价值为:" << sumValue << endl << endl;
}

int main() {
    while(true) {
        // n个物体
        int n;
        cout << "请输入物体总数(0退出):";
        cin >> n;
        if(!n) {
            break;
        }
        float C;
        cout << "请输入不超过的总重量:";
        cin >> C;
        Matter m[n];
        for(int i = 0; i < n; i++) {
            cout << "第" << i + 1 << "个物体的重量、价值分别为:";
            cin >> m[i].w;
            cin >> m[i].v;
        }
        //
        cout << "总价值最高的组合和价值为:" << endl;
        optionalLoad(m, n, C);
    }
    return 0;
}

输出数据

请输入物体总数(0退出):5
请输入不超过的总重量:101个物体的重量、价值分别为:3 92个物体的重量、价值分别为:9 33个物体的重量、价值分别为:2 44个物体的重量、价值分别为:4 25个物体的重量、价值分别为:1 1
总价值最高的组合和价值为:
第1个放入背包的重量为:3        价值为:92个放入背包的重量为:2        价值为:43个放入背包的重量为:1        价值为:14个放入背包的重量为:4        价值为:2
总价值为:16

请输入物体总数(0退出):5
请输入不超过的总重量:101个物体的重量、价值分别为:2 32个物体的重量、价值分别为:3 23个物体的重量、价值分别为:6 14个物体的重量、价值分别为:4 45个物体的重量、价值分别为:5 1
总价值最高的组合和价值为:
第1个放入背包的重量为:2        价值为:32个放入背包的重量为:4        价值为:43个放入背包的重量为:3        价值为:24个放入背包的重量为:1        价值为:0.2
总价值为:9.2

请输入物体总数(0退出):3
请输入不超过的总重量:9.21个物体的重量、价值分别为:1 12个物体的重量、价值分别为:2 23个物体的重量、价值分别为:3 3
总价值最高的组合和价值为:
第1个放入背包的重量为:1        价值为:12个放入背包的重量为:2        价值为:23个放入背包的重量为:3        价值为:3
总价值为:6

请输入物体总数(0退出):0

Process returned 0 (0x0)   execution time : 921.488 s
Press any key to continue.
版权声明:如需转载,请联系本人获取许可且必须注明出处,详见联系方式。

贪心法部分背包问题

  • 2014年06月27日 07:48
  • 19KB
  • 下载

贪心算法 部分背包问题

  • 2015年12月19日 15:06
  • 3.51MB
  • 下载

贪心法——背包问题【通俗易懂】

贪心法——背包问题一、概述 贪心法把一个复杂问题分解为一系列较为简单的局部最优选择,每一步选择都是对当前的一个扩展,直到获得问题的完整解。二、适用范围 典型应用是求解最优化问题,而且对许多问题都能...

贪心法求解背包问题(部分背包 物品可分)

/** * @file Greedy1Knapsack.cpp * @brief solve a question of Knapsack by using "select max valu...
  • plu_mik
  • plu_mik
  • 2014年12月18日 14:16
  • 337

私用贪心法解决背包问题

  • 2011年03月25日 08:45
  • 541B
  • 下载

贪心法——活动选择问题和背包问题

这三种算法总的来说,刚开始看的时候不知道怎么下手,但是看多了也会有那么一点儿感觉。分治法是这三种算法里面都有的思想,动态规划和贪心都是将问题分解成子问题求解,但动态规划里面的子问题都带有联系,而贪心算...

hdu 1009 FatMouse'Trade 贪心算法 之 部分背包问题

FatMouse' Trade Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) To...

部分背包问题贪心选择性质的证明

最近算法课讲到贪心算法,感觉书本上对bufentanxin

步步为营(五)贪心(4)部分背包问题

部分背包问题虽说是归于背包问题的一种,而且背包问题大多数是通过动态规划的出的结果,但是贪心算法解部分背包,不管是思想还是操作上来说,都是非常简单的。首先,我们来看一下什么叫做部分背包。 有N个商品...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:贪心法——部分背包问题
举报原因:
原因补充:

(最多只允许输入30个字)