首先明确一下回归与分类的区别:
分类和回归的区别在于输出变量的类型。
定量输出称为回归,或者说是连续变量预测;
定性输出称为分类,或者说是离散变量预测。
举个例子:
预测明天的气温是多少度,这是一个回归任务;
预测明天是阴、晴还是雨,就是一个分类任务;
决策树三种算法特性对比:
ID3特点:
(1)节点优先选取采用信息增益作为标准。
(2)容易造成过度拟合(倾向于选择分类多的节点)
(3)容易处理标称型数据(主要用于分类),但是很难处理连续型 数据(主要用于回归)。
4.5特点:
(1)既能处理标称型数据,又能连续型数据。为了处理连续型数据,该算法在相应的节点使用一个属性的阈值,利用阈值将样本

本文介绍了集成学习中的 AdaBoost、Bagging 和随机森林算法,对比了它们的特点和应用场景。AdaBoost 适用于二分类任务,而 Bagging 可处理多分类和回归任务。随机森林在样本和属性扰动中增加多样性,提高泛化性能。回归树虽然返回离散的均值,但在集成学习中扮演重要角色。最后,文章给出了随机森林的Python预测代码。
最低0.47元/天 解锁文章

1万+

被折叠的 条评论
为什么被折叠?



