一元线性回归模型与最小二乘法及其C++实现

原创 2012年12月02日 14:13:25

        监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。对于二维空间线性是一条直线;对于三维空间线性是一个平面,对于多维空间线性是一个超平面...这里,谈一谈最简单的一元线性回归模型。

1.一元线性回归模型

模型如下:



总体回归函数中Y与X的关系可是线性的,也可是非线性的。对线性回归模型的“线性”有两种解释:

      (1)就变量而言是线性的,Y的条件均值是 X的线性函数

     (2)就参数而言是线性的,Y的条件均值是参数的线性函数

线性回归模型主要指就参数而言是“线性”,因为只要对参数而言是线性的,都可以用类似的方法估计其参数。

2.参数估计——最小二乘法

        对于一元线性回归模型, 假设从总体中获取了n组观察值(X1,Y1),(X2,Y2), …,(Xn,Yn)。对于平面中的这n个点,可以使用无数条曲线来拟合。要求样本回归函数尽可能好地拟合这组值。综合起来看,这条直线处于样本数据的中心位置最合理。 选择最佳拟合曲线的标准可以确定为:使总的拟合误差(即总残差)达到最小。有以下三个标准可以选择:

        (1)用“残差和最小”确定直线位置是一个途径。但很快发现计算“残差和”存在相互抵消的问题。
        (2)用“残差绝对值和最小”确定直线位置也是一个途径。但绝对值的计算比较麻烦。
        (3)最小二乘法的原则是以“残差平方和最小”确定直线位置。用最小二乘法除了计算比较方便外,得到的估计量还具有优良特性。这种方法对异常值非常敏感。

        最常用的是普通最小二乘法( Ordinary  Least Square,OLS):所选择的回归模型应该使所有观察值的残差平方和达到最小。(Q为残差平方和)

样本回归模型:


残差平方和:


则通过Q最小确定这条直线,即确定,以为变量,把它们看作是Q的函数,就变成了一个求极值的问题,可以通过求导数得到。求Q对两个待估参数的偏导数:


解得:


3.最小二乘法c++实现

#include<iostream>
#include<fstream>
#include<vector>
using namespace std;

class LeastSquare{
	double a, b;
public:
	LeastSquare(const vector<double>& x, const vector<double>& y)
	{
		double t1=0, t2=0, t3=0, t4=0;
		for(int i=0; i<x.size(); ++i)
		{
			t1 += x[i]*x[i];
			t2 += x[i];
			t3 += x[i]*y[i];
			t4 += y[i];
		}
		a = (t3*x.size() - t2*t4) / (t1*x.size() - t2*t2);
		//b = (t4 - a*t2) / x.size();
		b = (t1*t4 - t2*t3) / (t1*x.size() - t2*t2);
	}

	double getY(const double x) const
	{
		return a*x + b;
	}

	void print() const
	{
		cout<<"y = "<<a<<"x + "<<b<<"\n";
	}

};

int main(int argc, char *argv[])
{
	if(argc != 2)
	{
		cout<<"Usage: DataFile.txt"<<endl;
		return -1;
	}
	else
	{
		vector<double> x;
		ifstream in(argv[1]);
		for(double d; in>>d; )
			x.push_back(d);
		int sz = x.size();
		vector<double> y(x.begin()+sz/2, x.end());
		x.resize(sz/2);
		LeastSquare ls(x, y);
		ls.print();
		
		cout<<"Input x:\n";
		double x0;
		while(cin>>x0)
		{
			cout<<"y = "<<ls.getY(x0)<<endl;
			cout<<"Input x:\n";
		}
	}
}



最小二乘法及C++实现

最小二乘法--使得观测值与理论值得偏差平方和最小。 以一元线性回归说明: 假设从总体中获取了n组观察值(x1,y1),(x2,y2)......(xn,yn)。则对于这n个点,选择最佳拟合曲线的标准为...
  • u013593585
  • u013593585
  • 2016年05月14日 10:01
  • 2085

最小二乘法拟合多项式原理以及c++实现

最小二乘拟合曲线原理,以及c++详细代码,最后给出了测试用例,将一组数据拟合成二次曲线。...
  • u010418035
  • u010418035
  • 2015年06月30日 16:45
  • 6991

线性回归week3

多元回归的例子 Swiss fertility data library(datasets); data(swiss); require(stats); require(graphics)...
  • u014596936
  • u014596936
  • 2014年08月22日 14:58
  • 803

重磅干货整理】机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总

转载:http://blog.csdn.net/zhongwen7710/article/details/45331915 《Brief History of Machine Lea...
  • wer0735
  • wer0735
  • 2018年01月06日 18:07
  • 198

最小二乘法及其C++实现

监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这...
  • t94127
  • t94127
  • 2017年03月19日 17:05
  • 1067

最小二乘法及其c++实现

设经验方程是y=F(x),方程中含有一些待定系数an,给出真实值{(xi,yi)|i=1,2,...n},将这些x,y值代入方程然后作差,可以描述误差:yi-F(xi),为了考虑整体的误差,可以取平方...
  • u012244950
  • u012244950
  • 2014年05月06日 19:18
  • 1701

神经网络直观理解

作者:机器之心 链接:https://www.zhihu.com/question/39022858/answer/203073911 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,...
  • ccccccod
  • ccccccod
  • 2018年01月17日 15:30
  • 5

快速掌握机器学习,这3种算法你必须知道

机器学习算法
  • lixiaoxiong55
  • lixiaoxiong55
  • 2018年01月01日 00:00
  • 15

最小二乘法的C++实现

  • 2013年12月15日 12:54
  • 1.24MB
  • 下载

C++最小二乘法拟合-(线性拟合和多项式拟合)

在进行曲线拟合时用的最多的是最小二乘法,其中以一元函数(线性)和多元函数(多项式)居多,本文介绍的这个类,用C++封装了专门用于进行多项式拟合和线性拟合的方法,可以根据用户输入的阶次进行多项式拟合,算...
  • czyt1988
  • czyt1988
  • 2014年03月23日 20:38
  • 17537
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:一元线性回归模型与最小二乘法及其C++实现
举报原因:
原因补充:

(最多只允许输入30个字)