一元线性回归模型与最小二乘法及其C++实现

原创 2012年12月02日 14:13:25

        监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。对于二维空间线性是一条直线;对于三维空间线性是一个平面,对于多维空间线性是一个超平面...这里,谈一谈最简单的一元线性回归模型。

1.一元线性回归模型

模型如下:



总体回归函数中Y与X的关系可是线性的,也可是非线性的。对线性回归模型的“线性”有两种解释:

      (1)就变量而言是线性的,Y的条件均值是 X的线性函数

     (2)就参数而言是线性的,Y的条件均值是参数的线性函数

线性回归模型主要指就参数而言是“线性”,因为只要对参数而言是线性的,都可以用类似的方法估计其参数。

2.参数估计——最小二乘法

        对于一元线性回归模型, 假设从总体中获取了n组观察值(X1,Y1),(X2,Y2), …,(Xn,Yn)。对于平面中的这n个点,可以使用无数条曲线来拟合。要求样本回归函数尽可能好地拟合这组值。综合起来看,这条直线处于样本数据的中心位置最合理。 选择最佳拟合曲线的标准可以确定为:使总的拟合误差(即总残差)达到最小。有以下三个标准可以选择:

        (1)用“残差和最小”确定直线位置是一个途径。但很快发现计算“残差和”存在相互抵消的问题。
        (2)用“残差绝对值和最小”确定直线位置也是一个途径。但绝对值的计算比较麻烦。
        (3)最小二乘法的原则是以“残差平方和最小”确定直线位置。用最小二乘法除了计算比较方便外,得到的估计量还具有优良特性。这种方法对异常值非常敏感。

        最常用的是普通最小二乘法( Ordinary  Least Square,OLS):所选择的回归模型应该使所有观察值的残差平方和达到最小。(Q为残差平方和)

样本回归模型:


残差平方和:


则通过Q最小确定这条直线,即确定,以为变量,把它们看作是Q的函数,就变成了一个求极值的问题,可以通过求导数得到。求Q对两个待估参数的偏导数:


解得:


3.最小二乘法c++实现

#include<iostream>
#include<fstream>
#include<vector>
using namespace std;

class LeastSquare{
	double a, b;
public:
	LeastSquare(const vector<double>& x, const vector<double>& y)
	{
		double t1=0, t2=0, t3=0, t4=0;
		for(int i=0; i<x.size(); ++i)
		{
			t1 += x[i]*x[i];
			t2 += x[i];
			t3 += x[i]*y[i];
			t4 += y[i];
		}
		a = (t3*x.size() - t2*t4) / (t1*x.size() - t2*t2);
		//b = (t4 - a*t2) / x.size();
		b = (t1*t4 - t2*t3) / (t1*x.size() - t2*t2);
	}

	double getY(const double x) const
	{
		return a*x + b;
	}

	void print() const
	{
		cout<<"y = "<<a<<"x + "<<b<<"\n";
	}

};

int main(int argc, char *argv[])
{
	if(argc != 2)
	{
		cout<<"Usage: DataFile.txt"<<endl;
		return -1;
	}
	else
	{
		vector<double> x;
		ifstream in(argv[1]);
		for(double d; in>>d; )
			x.push_back(d);
		int sz = x.size();
		vector<double> y(x.begin()+sz/2, x.end());
		x.resize(sz/2);
		LeastSquare ls(x, y);
		ls.print();
		
		cout<<"Input x:\n";
		double x0;
		while(cin>>x0)
		{
			cout<<"y = "<<ls.getY(x0)<<endl;
			cout<<"Input x:\n";
		}
	}
}



版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

OpenCV 学习(Hough 变换提取直线)

OpenCV 学习(Hough 变换提取直线)在机器视觉应用中,我们经常要提取图像中的各种特征,最基本的特征就是图像中的线条、拐角等。这篇笔记就来讲讲如何提取图像中的直线。这里使用的方法叫做 Houg...

最小二乘法详解(线性拟合与非线性拟合)

          监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。回归分析中,如果只包括一个自变量和一个因变量,且二者的关...

opencv直线拟合

关于原理部分 http://blog.csdn.net/liyuanbhu/article/details/50193947 他讲的不错,俺就懒得说,无非是做最优化,不过他代码写的不咋滴,自己上个例...

OpenCV 学习(直线拟合)

OpenCV 学习(直线拟合)Hough 变换可以提取图像中的直线。但是提取的直线的精度不高。而很多场合下,我们需要精确的估计直线的参数,这时就需要进行直线拟合。直线拟合的方法很多,比如一元线性回归就...

卡尔曼滤波C代码分析

卡尔曼滤波的思想其实很简单,就是根据方差实现的一种最优估计方法。

如何发表顶级期刊论文 (转)

吴信东 博士(美国佛蒙特大学计算机科学系正教授和系主任, TKDE 等多种国际著名学术杂志的主编和编委) 最重要的九点: 1 、技术贡献、证据 2 、切忌打击面太广、针对的问题多,切入点不能超过...

从最大似然到EM算法浅解

从最大似然到EM算法浅解 zouxy09@qq.com http://blog.csdn.net/zouxy09          机器学习十大算法之一:EM算法。能评得上十大之一,让人听起来觉得挺N...

超定方程和最小二乘法

最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法...

java加解密之DES多种使用方式

最近逆向分析中,常常遇到加解密的内容,接触得比较多的加解密算法一般有对称的DES和AES,非对称的RSA,单向的MD5等。 这里就DES的使用研究进行一个随笔记录,并不会说其实现原理,原理可以自行百度...

牛顿法与拟牛顿法学习笔记(一)牛顿法

机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering 算法,其主要工作在于求解一个非线性极小化问题。在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是 L-BF...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)