关闭

一元线性回归模型与最小二乘法及其C++实现

27776人阅读 评论(8) 收藏 举报
分类:

        监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。对于二维空间线性是一条直线;对于三维空间线性是一个平面,对于多维空间线性是一个超平面...这里,谈一谈最简单的一元线性回归模型。

1.一元线性回归模型

模型如下:



总体回归函数中Y与X的关系可是线性的,也可是非线性的。对线性回归模型的“线性”有两种解释:

      (1)就变量而言是线性的,Y的条件均值是 X的线性函数

     (2)就参数而言是线性的,Y的条件均值是参数的线性函数

线性回归模型主要指就参数而言是“线性”,因为只要对参数而言是线性的,都可以用类似的方法估计其参数。

2.参数估计——最小二乘法

        对于一元线性回归模型, 假设从总体中获取了n组观察值(X1,Y1),(X2,Y2), …,(Xn,Yn)。对于平面中的这n个点,可以使用无数条曲线来拟合。要求样本回归函数尽可能好地拟合这组值。综合起来看,这条直线处于样本数据的中心位置最合理。 选择最佳拟合曲线的标准可以确定为:使总的拟合误差(即总残差)达到最小。有以下三个标准可以选择:

        (1)用“残差和最小”确定直线位置是一个途径。但很快发现计算“残差和”存在相互抵消的问题。
        (2)用“残差绝对值和最小”确定直线位置也是一个途径。但绝对值的计算比较麻烦。
        (3)最小二乘法的原则是以“残差平方和最小”确定直线位置。用最小二乘法除了计算比较方便外,得到的估计量还具有优良特性。这种方法对异常值非常敏感。

        最常用的是普通最小二乘法( Ordinary  Least Square,OLS):所选择的回归模型应该使所有观察值的残差平方和达到最小。(Q为残差平方和)

样本回归模型:


残差平方和:


则通过Q最小确定这条直线,即确定,以为变量,把它们看作是Q的函数,就变成了一个求极值的问题,可以通过求导数得到。求Q对两个待估参数的偏导数:


解得:


3.最小二乘法c++实现

#include<iostream>
#include<fstream>
#include<vector>
using namespace std;

class LeastSquare{
	double a, b;
public:
	LeastSquare(const vector<double>& x, const vector<double>& y)
	{
		double t1=0, t2=0, t3=0, t4=0;
		for(int i=0; i<x.size(); ++i)
		{
			t1 += x[i]*x[i];
			t2 += x[i];
			t3 += x[i]*y[i];
			t4 += y[i];
		}
		a = (t3*x.size() - t2*t4) / (t1*x.size() - t2*t2);
		//b = (t4 - a*t2) / x.size();
		b = (t1*t4 - t2*t3) / (t1*x.size() - t2*t2);
	}

	double getY(const double x) const
	{
		return a*x + b;
	}

	void print() const
	{
		cout<<"y = "<<a<<"x + "<<b<<"\n";
	}

};

int main(int argc, char *argv[])
{
	if(argc != 2)
	{
		cout<<"Usage: DataFile.txt"<<endl;
		return -1;
	}
	else
	{
		vector<double> x;
		ifstream in(argv[1]);
		for(double d; in>>d; )
			x.push_back(d);
		int sz = x.size();
		vector<double> y(x.begin()+sz/2, x.end());
		x.resize(sz/2);
		LeastSquare ls(x, y);
		ls.print();
		
		cout<<"Input x:\n";
		double x0;
		while(cin>>x0)
		{
			cout<<"y = "<<ls.getY(x0)<<endl;
			cout<<"Input x:\n";
		}
	}
}



25
1

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:678274次
    • 积分:4026
    • 等级:
    • 排名:第7750名
    • 原创:26篇
    • 转载:25篇
    • 译文:0篇
    • 评论:157条
    最新评论