用vgg16做验证码识别(tensorflow版)

这篇文章主要是使用vgg16网络实现验证码的自动识别:
(1) captcha库
这个库可以自动生成验证码,生成验证码的代码如下:

from captcha.image import ImageCaptcha
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np


number = [str(i) for i in range(10)]
alphabet = [chr(i+ord('a')) for i in range(26)]
ALPHABET = [chr(i+ord('A')) for i in range(26)]
captcha_content = number+alphabet+ALPHABET
def gen_captcha(captcha_content,captcha_len=4):

    # captcha_content 构成验证码的字符list
    # captcha_len 验证码的长度
    captcha_str = np.random.choice(captcha_content,captcha_len)
    imageCaptcha = ImageCaptcha()
    captcha = imageCaptcha.generate(captcha_str)
    captcha = Image.open(captcha)
    captcha = np.array(captcha)
    return captcha,captcha_str
if __name__ == '__main__':
    captcha, captcha_str = gen_captcha(captcha_content, captcha_len=4)
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.set_title(captcha_str)
    ax.imshow(captcha)
    plt.show()

生成效果如下:
这里写图片描述

(2) 定义验证码识别的模型

import numpy as np
import tensorflow as tf

#image_size = [60,160,3]

def captcha_model(image_size,cap_size,input_data):

    with tf.name_scope('preprocess'):

        img_mean = tf.constant([123.68, 116.779, 103.939],tf.float32,shape=[1,1,1,3],name='img_mean')

        input_net = input_data - img_mean


    with tf.variable_scope('conv1') as scope:
        conv1_1 = tf.layers.conv2d(input_net,64,[3,3],[1,1],padding='same',activation=tf.nn.relu,kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),bias_initializer=tf.zeros_initializer(),name='conv1_1')
        conv1_2 = tf.layers.conv2d(conv1_1, 64, [3, 3], [1,1], padding='same', activation=tf.nn.relu,kernel_initializer=tf.truncated_normal_initializer(stddev=0.01), name='conv1_2')
        pool1_1 = tf.layers.max_pooling2d(conv1_2,[2,2],[2,2],'same',name='conv1_pool')

    with tf.variable_scope('conv2') as scope:

        conv2_1 = tf.layers.conv2d(pool1_1,128,[3,3],[1,1],padding='same',activation=tf.nn.relu,kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),bias_initializer=tf.zeros_initializer(),name='conv2_1')
        conv2_2 = tf.layers.conv2d(conv2_1, 128, [3, 3], [1, 1], padding='same', activation=tf.nn.relu,kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),bias_initializer=tf.zeros_initializer(), name='conv2_2')
        pool2_1 = tf.layers.max_pooling2d(conv2_2, [2, 2], [2, 2], 'same', name='conv2_pool')

    with tf.variable_scope('conv3') as scope:

        conv3_1 = tf.layers.conv2d(pool2_1,256,[3,3],[1,1],padding='same',activation=tf.nn.relu,kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),bias_initializer=tf.zeros_initializer(),name='conv3_1')
        conv3_2 = tf.layers.conv2d(conv3_1, 256, [3, 3], [1, 1], padding='same', activation=tf.nn.relu,kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),bias_initializer=tf.zeros_initializer(), name='conv3_2')
        conv3_3 = tf.layers.conv2d(conv3_2, 256, [3, 3], [1, 1], padding='same', activation=tf.nn.relu,kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),bias_initializer=tf.zeros_initializer(), name='conv3_3')
        pool3_1 = tf.layers.max_pooling2d(conv3_3, [2, 2], [2, 2], 'same', name='conv3_pool')

    with tf.variable_scope('conv4') as scope:

        conv4_1 = tf.layers.conv2d(pool3_1,512,[3,3],[1,1],padding='same',activation=tf.nn.relu,kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),bias_initializer=tf.zeros_initializer(),name='conv4_1')
        conv4_2 = tf.layers.conv2d(conv4_1, 512, [3, 3], [1, 1], padding='same', activation=tf.nn.relu,kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),bias_initializer=tf.zeros_initializer(), name='conv4_2')
        conv4_3 = tf.layers.conv2d(conv4_2, 512, [3, 3], [1, 1], padding='same', activation=tf.nn.relu,kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),bias_initializer=tf.zeros_initializer(), name='conv4_3')
        pool4_1 = tf.layers.max_pooling2d(conv4_3, [2, 2], [2, 2], 'same', name='conv4_pool')

    with tf.variable_scope('conv5') as scope:

        conv5_1 = tf.layers.conv2d(pool4_1,512,[3,3],[1,1],padding='same',activation=tf.nn.relu,kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),bias_initializer=tf.zeros_initializer(),name='conv5_1')
        conv5_2 = tf.layers.conv2d(conv5_1, 512, [3, 3], [1, 1], padding='same', activation=tf.nn.relu,kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),bias_initializer=tf.zeros_initializer(), name='conv5_2')
        conv5_3 = tf.layers.conv2d(conv5_2, 512, [3, 3], [1, 1], padding='same', activation=tf.nn.relu,kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),bias_initializer=tf.zeros_initializer(), name='conv5_3')
        pool5_1 = tf.layers.max_pooling2d(conv5_3, [2, 2], [2, 2], 'same', name='conv4_pool')

    with tf.variable_scope('fc') as scope:


        #flat = tf.layers.flatten(pool5_1)
        flat = tf.reshape(pool5_1,shape=[-1,5120])

        fc1 = tf.layers.dense(flat,1024,name='fc1',kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),bias_initializer=tf.zeros_initializer(),activation=tf.nn.relu)
        fc2 = tf.layers.dense(fc1, 512,kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),bias_initializer=tf.zeros_initializer(),name='fc2')
        logits = tf.layers.dense(fc2,cap_size,name='fc3',activation=None)

        return logits

定义数据生成py文件:

from captcha.image import ImageCaptcha
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
def gen_captcha(captcha_content,captcha_len=4):

    # captcha_content 构成验证码的字符list
    # captcha_len 验证码的长度
    captcha_str = np.random.choice(captcha_content,captcha_len)
    imageCaptcha = ImageCaptcha()
    captcha = imageCaptcha.generate(captcha_str)
    captcha = Image.open(captcha)
    captcha = np.array(captcha)
    return captcha,captcha_str

def gen_batch(batch_size,image_size,captcha_content,str_to_int,captcha_len=4):


    x_train = np.zeros([batch_size,*image_size])
    y_ture = np.zeros([batch_size,captcha_len])

    while True:
        for i in range(batch_size):
            xs,ys = gen_captcha(captcha_content,captcha_len)
            x_train[i,:,:,:] = xs
            y_ture[i,:] = np.array([str_to_int[i] for i in ys])

        yield x_train,y_ture

定义训练py文件:

from model import captcha_model
from utils import gen_batch,build_dict_str_int
import tensorflow as tf
import numpy as np


number = [str(i) for i in range(10)]
alphabet = [chr(i+ord('a')) for i in range(26)]
ALPHABET = [chr(i+ord('A')) for i in range(26)]

image_size = [60,160,3]
lr = 0.001
epochs = 100
batch_size = 64
captcha_content = number
captcha_len = 4
captcha_size = len(captcha_content)
cap_size = captcha_size*captcha_len

str_to_int,int_to_str = build_dict_str_int(captcha_content)

input_data = tf.placeholder(dtype=tf.float32, shape=[None, *image_size], name='input_data')

label = tf.placeholder(dtype=tf.int32, shape=[None, captcha_len])

logits = captcha_model(image_size,cap_size,input_data)

y_true_one = tf.one_hot(indices=label,depth=captcha_size,axis=2,name='one_hot')
re_y_true = tf.reshape(y_true_one,shape=[batch_size,-1])

loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits,labels=re_y_true))

optimizer = tf.train.AdamOptimizer(lr).minimize(loss)

y_pre = tf.argmax(tf.reshape(logits,[-1,captcha_len,captcha_size]),2)
y_true = tf.argmax(y_true_one,2)

accuracy = tf.reduce_mean(tf.cast(tf.equal(y_pre,y_true),tf.float32))


with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    writer = tf.summary.FileWriter('./graph/crack_capcha',sess.graph)

    saver = tf.train.Saver()
    gen_data = gen_batch(batch_size,image_size,captcha_content,str_to_int,captcha_len)
    epoch = 0
    while True:


        #for epoch in range(epochs):
        xs, ys = next(gen_data)
        _,train_loss,train_acc = sess.run([optimizer,loss,accuracy],feed_dict={input_data:xs,label:ys})

        if epoch % 10 == 0:
            print('Epochs {}/{} train_acc {},train_loss {}'.format(epoch,epochs,train_acc,train_loss))

            #saver.save(sess, "./model/crack_capcha.model", global_step=epoch)
        if train_acc > 0.9:
                saver.save(sess, "./model/crack_capcha.model", global_step=epoch)
                break
        epoch += 1
    writer.close()

训练时间可能比较长,耐心等待

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
卷积神经网络(Convolutional Neural Network, CNN)是一种专门针对图像、视频等结构化数据设计的深度学习模型,它在计算机视觉、语音识别、自然语言处理等多个领域都有广泛应用。CNN的核心设计理念源于对生物视觉系统的模拟,尤其是大脑皮层中视觉信息处理的方式,其主要特点包括局部感知、权重共享、多层级抽象以及空间不变性。以下是CNN技术的详细介绍: ### **1. 局部感知与卷积操作** **卷积层**是CNN的基本构建块,它通过使用一组可学习的滤波器(或称为卷积核)对输入图像进行扫描。每个滤波器在图像上滑动(卷积),并以局部区域(感受野)内的像素值与滤波器权重进行逐元素乘法后求和,生成一个输出值。这一过程强调了局部特征的重要性,因为每个滤波器仅对一小部分相邻像素进行响应,从而能够捕获图像中的边缘、纹理、颜色分布等局部特征。 ### **2. 权重共享** 在CNN中,同一滤波器在整个输入图像上保持相同的权重(参数)。这意味着,无论滤波器在图像的哪个位置应用,它都使用相同的参数集来提取特征。这种权重共享显著减少了模型所需的参数数量,增强了模型的泛化能力,并且体现了对图像平移不变性的内在假设,即相同的特征(如特定形状或纹理)不论出现在图像的哪个位置,都应由相同的滤波器识别。 ### **3. 池化操作** **池化层**通常紧随卷积层之后,用于进一步降低数据维度并引入一定的空间不变性。常见的池化方法有最大池化和平均池化,它们分别取局部区域的最大值或平均值作为输出。池化操作可以减少模型对微小位置变化的敏感度,同时保留重要的全局或局部特征。 ### **4. 多层级抽象** CNN通常包含多个卷积和池化层堆叠在一起,形成深度网络结构。随着网络深度的增加,每一层逐渐提取更复杂、更抽象的特征。底层可能识别边缘、角点等低级特征,中间层识别纹理、部件等中级特征,而高层可能识别整个对象或场景等高级语义特征。这种层级结构使得CNN能够从原始像素数据中自动学习到丰富的表示,无需人工设计复杂的特征。 ### **5. 激活函数与正则化** CNN中通常使用非线性激活函数(如ReLU、sigmoid、tanh等)来引入非线性表达能力,使得网络能够学习复杂的决策边界。为了防止过拟合,CNN常采用正则化技术,如L2正则化(权重衰减)来约束模型复杂度,以及Dropout技术,在训练过程中随机丢弃一部分神经元的输出,以增强模型的泛化性能。 ### **6. 应用场景** CNN在诸多领域展现出强大的应用价值,包括但不限于: - **图像分类**:如识别图像中的物体类别(猫、狗、车等)。 - **目标检测**:在图像中定位并标注出特定对象的位置及类别。 - **语义分割**:对图像中的每个像素进行分类,确定其所属的对象或背景类别。 - **人脸识别**:识别或验证个体身份。 - **图像生成**:通过如生成对抗网络(GANs)等技术创建新的、逼真的图像。 - **医学影像分析**:如肿瘤检测、疾病诊断等。 - **自然语言处理**:如文本分类、情感分析、词性标注等,尽管这些任务通常结合其他类型的网络结构(如循环神经网络)。 ### **7. 发展与演变** CNN的概念起源于20世纪80年代,但其影响力在硬件加速(如GPU)和大规模数据集(如ImageNet)出现后才真正显现。经典模型如LeNet-5用于手写数字识别,而AlexNet、VGG、GoogLeNet、ResNet等现代架构在图像识别竞赛中取得突破性成果,推动了CNN技术的快速发展。如今,CNN已经成为深度学习图像处理领域的基石,并持续创新,如引入注意力机制、残差学习、深度可分离卷积等先进思想。 综上所述,卷积神经网络通过其独特的局部感知、权重共享、多层级抽象等特性,高效地从图像数据中提取特征并进行学习,已成为解决图像和视频处理任务不可或缺的工具,并在众多实际应用中取得了卓越的效果。
卷积神经网络(Convolutional Neural Network, CNN)是一种专门针对图像、视频等结构化数据设计的深度学习模型,它在计算机视觉、语音识别、自然语言处理等多个领域都有广泛应用。CNN的核心设计理念源于对生物视觉系统的模拟,尤其是大脑皮层中视觉信息处理的方式,其主要特点包括局部感知、权重共享、多层级抽象以及空间不变性。以下是CNN技术的详细介绍: ### **1. 局部感知与卷积操作** **卷积层**是CNN的基本构建块,它通过使用一组可学习的滤波器(或称为卷积核)对输入图像进行扫描。每个滤波器在图像上滑动(卷积),并以局部区域(感受野)内的像素值与滤波器权重进行逐元素乘法后求和,生成一个输出值。这一过程强调了局部特征的重要性,因为每个滤波器仅对一小部分相邻像素进行响应,从而能够捕获图像中的边缘、纹理、颜色分布等局部特征。 ### **2. 权重共享** 在CNN中,同一滤波器在整个输入图像上保持相同的权重(参数)。这意味着,无论滤波器在图像的哪个位置应用,它都使用相同的参数集来提取特征。这种权重共享显著减少了模型所需的参数数量,增强了模型的泛化能力,并且体现了对图像平移不变性的内在假设,即相同的特征(如特定形状或纹理)不论出现在图像的哪个位置,都应由相同的滤波器识别。 ### **3. 池化操作** **池化层**通常紧随卷积层之后,用于进一步降低数据维度并引入一定的空间不变性。常见的池化方法有最大池化和平均池化,它们分别取局部区域的最大值或平均值作为输出。池化操作可以减少模型对微小位置变化的敏感度,同时保留重要的全局或局部特征。 ### **4. 多层级抽象** CNN通常包含多个卷积和池化层堆叠在一起,形成深度网络结构。随着网络深度的增加,每一层逐渐提取更复杂、更抽象的特征。底层可能识别边缘、角点等低级特征,中间层识别纹理、部件等中级特征,而高层可能识别整个对象或场景等高级语义特征。这种层级结构使得CNN能够从原始像素数据中自动学习到丰富的表示,无需人工设计复杂的特征。 ### **5. 激活函数与正则化** CNN中通常使用非线性激活函数(如ReLU、sigmoid、tanh等)来引入非线性表达能力,使得网络能够学习复杂的决策边界。为了防止过拟合,CNN常采用正则化技术,如L2正则化(权重衰减)来约束模型复杂度,以及Dropout技术,在训练过程中随机丢弃一部分神经元的输出,以增强模型的泛化性能。 ### **6. 应用场景** CNN在诸多领域展现出强大的应用价值,包括但不限于: - **图像分类**:如识别图像中的物体类别(猫、狗、车等)。 - **目标检测**:在图像中定位并标注出特定对象的位置及类别。 - **语义分割**:对图像中的每个像素进行分类,确定其所属的对象或背景类别。 - **人脸识别**:识别或验证个体身份。 - **图像生成**:通过如生成对抗网络(GANs)等技术创建新的、逼真的图像。 - **医学影像分析**:如肿瘤检测、疾病诊断等。 - **自然语言处理**:如文本分类、情感分析、词性标注等,尽管这些任务通常结合其他类型的网络结构(如循环神经网络)。 ### **7. 发展与演变** CNN的概念起源于20世纪80年代,但其影响力在硬件加速(如GPU)和大规模数据集(如ImageNet)出现后才真正显现。经典模型如LeNet-5用于手写数字识别,而AlexNet、VGG、GoogLeNet、ResNet等现代架构在图像识别竞赛中取得突破性成果,推动了CNN技术的快速发展。如今,CNN已经成为深度学习图像处理领域的基石,并持续创新,如引入注意力机制、残差学习、深度可分离卷积等先进思想。 综上所述,卷积神经网络通过其独特的局部感知、权重共享、多层级抽象等特性,高效地从图像数据中提取特征并进行学习,已成为解决图像和视频处理任务不可或缺的工具,并在众多实际应用中取得了卓越的效果。
卷积神经网络(Convolutional Neural Network, CNN)是一种专门针对图像、视频等结构化数据设计的深度学习模型,它在计算机视觉、语音识别、自然语言处理等多个领域都有广泛应用。CNN的核心设计理念源于对生物视觉系统的模拟,尤其是大脑皮层中视觉信息处理的方式,其主要特点包括局部感知、权重共享、多层级抽象以及空间不变性。以下是CNN技术的详细介绍: ### **1. 局部感知与卷积操作** **卷积层**是CNN的基本构建块,它通过使用一组可学习的滤波器(或称为卷积核)对输入图像进行扫描。每个滤波器在图像上滑动(卷积),并以局部区域(感受野)内的像素值与滤波器权重进行逐元素乘法后求和,生成一个输出值。这一过程强调了局部特征的重要性,因为每个滤波器仅对一小部分相邻像素进行响应,从而能够捕获图像中的边缘、纹理、颜色分布等局部特征。 ### **2. 权重共享** 在CNN中,同一滤波器在整个输入图像上保持相同的权重(参数)。这意味着,无论滤波器在图像的哪个位置应用,它都使用相同的参数集来提取特征。这种权重共享显著减少了模型所需的参数数量,增强了模型的泛化能力,并且体现了对图像平移不变性的内在假设,即相同的特征(如特定形状或纹理)不论出现在图像的哪个位置,都应由相同的滤波器识别。 ### **3. 池化操作** **池化层**通常紧随卷积层之后,用于进一步降低数据维度并引入一定的空间不变性。常见的池化方法有最大池化和平均池化,它们分别取局部区域的最大值或平均值作为输出。池化操作可以减少模型对微小位置变化的敏感度,同时保留重要的全局或局部特征。 ### **4. 多层级抽象** CNN通常包含多个卷积和池化层堆叠在一起,形成深度网络结构。随着网络深度的增加,每一层逐渐提取更复杂、更抽象的特征。底层可能识别边缘、角点等低级特征,中间层识别纹理、部件等中级特征,而高层可能识别整个对象或场景等高级语义特征。这种层级结构使得CNN能够从原始像素数据中自动学习到丰富的表示,无需人工设计复杂的特征。 ### **5. 激活函数与正则化** CNN中通常使用非线性激活函数(如ReLU、sigmoid、tanh等)来引入非线性表达能力,使得网络能够学习复杂的决策边界。为了防止过拟合,CNN常采用正则化技术,如L2正则化(权重衰减)来约束模型复杂度,以及Dropout技术,在训练过程中随机丢弃一部分神经元的输出,以增强模型的泛化性能。 ### **6. 应用场景** CNN在诸多领域展现出强大的应用价值,包括但不限于: - **图像分类**:如识别图像中的物体类别(猫、狗、车等)。 - **目标检测**:在图像中定位并标注出特定对象的位置及类别。 - **语义分割**:对图像中的每个像素进行分类,确定其所属的对象或背景类别。 - **人脸识别**:识别或验证个体身份。 - **图像生成**:通过如生成对抗网络(GANs)等技术创建新的、逼真的图像。 - **医学影像分析**:如肿瘤检测、疾病诊断等。 - **自然语言处理**:如文本分类、情感分析、词性标注等,尽管这些任务通常结合其他类型的网络结构(如循环神经网络)。 ### **7. 发展与演变** CNN的概念起源于20世纪80年代,但其影响力在硬件加速(如GPU)和大规模数据集(如ImageNet)出现后才真正显现。经典模型如LeNet-5用于手写数字识别,而AlexNet、VGG、GoogLeNet、ResNet等现代架构在图像识别竞赛中取得突破性成果,推动了CNN技术的快速发展。如今,CNN已经成为深度学习图像处理领域的基石,并持续创新,如引入注意力机制、残差学习、深度可分离卷积等先进思想。 综上所述,卷积神经网络通过其独特的局部感知、权重共享、多层级抽象等特性,高效地从图像数据中提取特征并进行学习,已成为解决图像和视频处理任务不可或缺的工具,并在众多实际应用中取得了卓越的效果。
利用GM-HMM对验证码进行分割,通过CNN(类VGG模型)训练识别,其中对单个字符的识别准确率为98.20%,对整个验证码识别的准确率为82% 卷积神经网络(Convolutional Neural Network, CNN)是一种专门针对图像、视频等结构化数据设计的深度学习模型,它在计算机视觉、语音识别、自然语言处理等多个领域都有广泛应用。CNN的核心设计理念源于对生物视觉系统的模拟,尤其是大脑皮层中视觉信息处理的方式,其主要特点包括局部感知、权重共享、多层级抽象以及空间不变性。以下是CNN技术的详细介绍: ### **1. 局部感知与卷积操作** **卷积层**是CNN的基本构建块,它通过使用一组可学习的滤波器(或称为卷积核)对输入图像进行扫描。每个滤波器在图像上滑动(卷积),并以局部区域(感受野)内的像素值与滤波器权重进行逐元素乘法后求和,生成一个输出值。这一过程强调了局部特征的重要性,因为每个滤波器仅对一小部分相邻像素进行响应,从而能够捕获图像中的边缘、纹理、颜色分布等局部特征。 ### **2. 权重共享** 在CNN中,同一滤波器在整个输入图像上保持相同的权重(参数)。这意味着,无论滤波器在图像的哪个位置应用,它都使用相同的参数集来提取特征。这种权重共享显著减少了模型所需的参数数量,增强了模型的泛化能力,并且体现了对图像平移不变性的内在假设,即相同的特征(如特定形状或纹理)不论出现在图像的哪个位置,都应由相同的滤波器识别。 ### **3. 池化操作** **池化层**通常紧随卷积层之后,用于进一步降低数据维度并引入一定的空间不变性。常见的池化方法有最大池化和平均池化,它们分别取局部区域的最大值或平均值作为输出。池化操作可以减少模型对微小位置变化的敏感度,同时保留重要的全局或局部特征。 ### **4. 多层级抽象** CNN通常包含多个卷积和池化层堆叠在一起,形成深度网络结构。随着网络深度的增加,每一层逐渐提取更复杂、更抽象的特征。底层可能识别边缘、角点等低级特征,中间层识别纹理、部件等中级特征,而高层可能识别整个对象或场景等高级语义特征。这种层级结构使得CNN能够从原始像素数据中自动学习到丰富的表示,无需人工设计复杂的特征。 ### **5. 激活函数与正则化** CNN中通常使用非线性激活函数(如ReLU、sigmoid、tanh等)来引入非线性表达能力,使得网络能够学习复杂的决策边界。为了防止过拟合,CNN常采用正则化技术,如L2正则化(权重衰减)来约束模型复杂度,以及Dropout技术,在训练过程中随机丢弃一部分神经元的输出,以增强模型的泛化性能。 ### **6. 应用场景** CNN在诸多领域展现出强大的应用价值,包括但不限于: - **图像分类**:如识别图像中的物体类别(猫、狗、车等)。 - **目标检测**:在图像中定位并标注出特定对象的位置及类别。 - **语义分割**:对图像中的每个像素进行分类,确定其所属的对象或背景类别。 - **人脸识别**:识别或验证个体身份。 - **图像生成**:通过如生成对抗网络(GANs)等技术创建新的、逼真的图像。 - **医学影像分析**:如肿瘤检测、疾病诊断等。 - **自然语言处理**:如文本分类、情感分析、词性标注等,尽管这些任务通常结合其他类型的网络结构(如循环神经网络)。 ### **7. 发展与演变** CNN的概念起源于20世纪80年代,但其影响力在硬件加速(如GPU)和大规模数据集(如ImageNet)出现后才真正显现。经典模型如LeNet-5用于手写数字识别,而AlexNet、VGG、GoogLeNet、ResNet等现代架构在图像识别竞赛中取得突破性成果,推动了CNN技术的快速发展。如今,CNN已经成为深度学习图像处理领域的基石,并持续创新,如引入注意力机制、残差学习、深度可分离卷积等先进思想。 综上所述,卷积神经网络通过其独特的局部感知、权重共享、多层级抽象等特性,高效地从图像数据中提取特征并进行学习,已成为解决图像和视频处理任务不可或缺的工具,并在众多实际应用中取得了卓越的效果。
使用VGG16进行猫狗识别的步骤如下: 1. 导入所需的库函数,包括Keras和VGG16模型。\[2\] 2. 获取猫狗数据集,可以从Kaggle上下载。数据集包含训练集和测试集,每个集合都有12500张猫和狗的图片。\[1\] 3. 创建验证集和测试集,可以使用train_test_split函数将训练集划分为训练集和验证集。\[2\] 4. 对图像进行标准化处理,可以使用ImageDataGenerator函数来进行图像预处理。\[2\] 5. 创建数据集,使用flow_from_directory函数将图像加载到内存中,并进行数据增强。\[2\] 6. 创建VGG16模型,可以使用预训练的VGG16模型作为基础模型,并在顶部添加自定义的全连接层。\[2\] 7. 开始训练模型,使用compile函数指定优化器、损失函数和评估指标,然后使用fit_generator函数进行模型训练。\[2\] 8. 可以绘制训练损失和测试损失的关系图,以及训练精度和测试精度的关系图,以便对模型的性能进行评估。\[2\] 9. 最后,保存训练好的模型权重,以便以后进行预测。\[2\] 以上是使用VGG16进行猫狗识别的基本步骤。具体的代码实现可以参考引用\[2\]中提供的示例代码。 #### 引用[.reference_title] - *1* [Keras--基于VGG16卷积神经网络---猫狗分类](https://blog.csdn.net/m0_54020832/article/details/125630326)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [VGG16识别Kaggle猫狗(Pytorch实战)](https://blog.csdn.net/weixin_42888638/article/details/121939629)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值