# poj2488A Knight's Journey

79人阅读 评论(0)

Description

Background
The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey
around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans?

Problem
Find a path such that the knight visits every square once. The knight can start and end on any square of the board.

Input

The input begins with a positive integer n in the first line. The following lines contain n test cases. Each test case consists of a single line with two positive integers p and q, such that 1 <= p * q <= 26. This represents a p * q chessboard, where p describes how many different square numbers 1, . . . , p exist, q describes how many different square letters exist. These are the first q letters of the Latin alphabet: A, . . .

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the lexicographically first path that visits all squares of the chessboard with knight moves followed by an empty line. The path should be given on a single line by concatenating the names of the visited squares. Each square name consists of a capital letter followed by a number.
If no such path exist, you should output impossible on a single line.

Sample Input

3
1 1
2 3
4 3

Sample Output

Scenario #1:
A1

Scenario #2:
impossible

Scenario #3:
A1B3C1A2B4C2A3B1C3A4B2C4

#include <cstdio>

#include <iostream>
using namespace std;
int p, q, path[88][88], vis[88][88];//p,q输入的横轴竖轴，path代表路径，vis代表点否访问
bool flag;//判断最后是不是所有的点都经过一遍

int dx[8] = { 1, 2, 2, 1, -1, -2, -2, -1 };
int dy[8] = { -2, -1, 1, 2, 2, 1, -1, -2 };

bool judge(int x, int y)
{
if (x >= 1 && x <= p&&y >= 1 && y <= q&&vis[x][y] == 0 && flag == false)
return true;
return false;
}

void DFS(int r, int c, int step)
{
path[step][0] = r;
path[step][1] = c;
if (step == p*q)
{
flag = true;
return;
}
for (int i = 0; i < 8; i++)
{
int nx = r + dx[i];
int ny = c + dy[i];
if (judge(nx, ny))
{
vis[nx][ny] = 1;
DFS(nx, ny, step + 1);
vis[nx][ny] = 0;
}
}
}
int main()
{
int n, cas = 0;
while (cin >> n)
{

while (n--)
{
flag = 0;
cin >> p >> q;
vis[1][1] = 1;
DFS(1, 1, 1);
cout << "Scenario #" << ++cas <<"："<<endl;
if (flag)
{
for (int i = 1; i <= p*q; i++)
{
cout << (char)('A' + path[i][1] - 1) << path[i][0];
}
}
else
cout << "impossible";
cout << endl;
if (n != 0)
cout << endl;

}

}
system("pause");
return 0;

}

Description

Background
The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey
around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans?

Problem
Find a path such that the knight visits every square once. The knight can start and end on any square of the board.

Input

The input begins with a positive integer n in the first line. The following lines contain n test cases. Each test case consists of a single line with two positive integers p and q, such that 1 <= p * q <= 26. This represents a p * q chessboard, where p describes how many different square numbers 1, . . . , p exist, q describes how many different square letters exist. These are the first q letters of the Latin alphabet: A, . . .

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the lexicographically first path that visits all squares of the chessboard with knight moves followed by an empty line. The path should be given on a single line by concatenating the names of the visited squares. Each square name consists of a capital letter followed by a number.
If no such path exist, you should output impossible on a single line.

Sample Input

3
1 1
2 3
4 3

Sample Output

Scenario #1:
A1

Scenario #2:
impossible

Scenario #3:
A1B3C1A2B4C2A3B1C3A4B2C4

#include <cstdio>

#include <iostream>
using namespace std;
int p, q, path[88][88], vis[88][88];//p,q输入的横轴竖轴，path代表路径，vis代表点否访问
bool flag;//判断最后是不是所有的点都经过一遍

int dx[8] = { 1, 2, 2, 1, -1, -2, -2, -1 };
int dy[8] = { -2, -1, 1, 2, 2, 1, -1, -2 };

bool judge(int x, int y)
{
if (x >= 1 && x <= p&&y >= 1 && y <= q&&vis[x][y] == 0 && flag == false)
return true;
return false;
}

void DFS(int r, int c, int step)
{
path[step][0] = r;
path[step][1] = c;
if (step == p*q)
{
flag = true;
return;
}
for (int i = 0; i < 8; i++)
{
int nx = r + dx[i];
int ny = c + dy[i];
if (judge(nx, ny))
{
vis[nx][ny] = 1;
DFS(nx, ny, step + 1);
vis[nx][ny] = 0;
}
}
}
int main()
{
int n, cas = 0;
while (cin >> n)
{

while (n--)
{
flag = 0;
cin >> p >> q;
vis[1][1] = 1;
DFS(1, 1, 1);
cout << "Scenario #" << ++cas <<"："<<endl;
if (flag)
{
for (int i = 1; i <= p*q; i++)
{
cout << (char)('A' + path[i][1] - 1) << path[i][0];
}
}
else
cout << "impossible";
cout << endl;
if (n != 0)
cout << endl;

}

}
system("pause");
return 0;

}

0
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：26822次
• 积分：1433
• 等级：
• 排名：千里之外
• 原创：123篇
• 转载：5篇
• 译文：0篇
• 评论：5条
评论排行
最新评论