hdu5890 Eighty seven(DP)

题意:50个数,10W个询问,每次问删掉第i,j,k个数后,是否存在一种选10个数和为87的方案,只需要输出 ’Yes’ 或者 ’No’

题解:暴力:不同的询问大概2W个,每个暴力bitset DP,抠一抠能卡着过。优化1:先求出一组解,如果询问和解没交就是’Yes’,否则暴力,不同的询问大概1W个;优化2:先预处理出所有询问的答案,能方便的复用之前的DP数组,不用每次从头开始重新求。

思路:学习了一波bitset...

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int N=1e5+10,M=1e6+10,inf=1e9+10,mod=1e9+7;
const ll INF=1e18+10;
bitset<90>dp[11];
int ans[60][60][60];
int a[100],n,m;
int q[5];
int check(int x,int y,int z)
{
    for(int i=0;i<=n;i++)dp[i].reset();
    dp[0][0]=1;
    for(int i=1;i<=n;i++)
    {
        if(i!=x&&i!=y&&i!=z)
            for(int t=10;t>=1;t--)
                dp[t]|=dp[t-1]<<a[i];
    }
    if(dp[10][87]==1)
        return 1;
    return 0;
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        memset(ans,0,sizeof(ans));
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]);
        for(int i=1;i<=n;i++)
            for(int j=i;j<=n;j++)
                for(int k=j;k<=n;k++)
                if(check(i,j,k))ans[i][j][k]=1;
        scanf("%d",&m);
        while(m--)
        {
            for(int i=0;i<3;i++)
                scanf("%d",&q[i]);
            sort(q,q+3);
            if(ans[q[0]][q[1]][q[2]])
                printf("Yes\n");
            else
                printf("No\n");
        }
    }
    return 0;
}


Problem Description
Mr. Fib is a mathematics teacher of a primary school. In the next lesson, he is planning to teach children how to add numbers up. Before the class, he will prepare  N cards with numbers. The number on the  i -th card is  ai . In class, each turn he will remove no more than  3  cards and let students choose any ten cards, the sum of the numbers on which is  87 . After each turn the removed cards will be put back to their position. Now, he wants to know if there is at least one solution of each turn. Can you help him?
 

Input
The first line of input contains an integer  t (t5) , the number of test cases.  t  test cases follow.
For each test case, the first line consists an integer  N(N50) .
The second line contains  N  non-negative integers  a1,a2,...,aN . The  i -th number represents the number on the  i -th card. The third line consists an integer  Q(Q100000) . Each line of the next  Q  lines contains three integers  i,j,k , representing Mr.Fib will remove the  i -th,  j -th, and  k -th cards in this turn. A question may degenerate while  i=j i=k  or  j=k .
 

Output
For each turn of each case, output 'Yes' if there exists at least one solution, otherwise output 'No'.
 

Sample Input
  
  
1 12 1 2 3 4 5 6 7 8 9 42 21 22 10 1 2 3 3 4 5 2 3 2 10 10 10 10 11 11 10 1 1 1 2 10 1 11 12 1 10 10 11 11 12
 

Sample Output
  
  
No No No Yes No Yes No No Yes Yes
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值