《Facial Landmark Detection by Deep Multi-task Learning》原文地址及实现代码在文章链接中。
文章提出TCDCN(Tasks-Constrained Deep Convolutional Network),使用与人脸相关的属性共同来学习人脸的特征点位置,通过这种多任务的学习,来提高人脸特征点检测的鲁棒性。具体而言,就是在人脸特征点检测时候,同时进行多个任务(包括性别、是否戴眼镜、是否微笑以及脸部姿势)的学习。使用这些辅助属性可以帮助更好的定位特征点。
这种多任务学习的困难在于:不同的任务有不同的特点,有不同的收敛速度。针对这两个问题,作者给出的解决方法分别是tasks-constrained deep model和task-wise early stopping。文章所提出的方法优于当时已存在的方法,特别是能处理有严重遮挡和姿势变化的情况,而且减少了模型的复杂度。
上图展示了其他辅助属性的检测结果,人脸特征点检测这一任务可以与多个辅助任务同时进行,对比以前的CNN和Cascaded CNN,文章具有更好的表现性
要点:
(1)对于不同的任务,具有不同的特点,文章给出的解决方法是tasks-constrained deep mo