人脸特征点检测(四)——Tasks-Constrained DCN(TCDCN)

TCDCN是一种基于深度多任务学习的人脸特征点检测方法,通过结合性别、眼镜、微笑等辅助属性提高鲁棒性。解决不同任务收敛速度问题,采用tasks-constrained deep model和task-wise early stopping策略。实验表明,这种方法在处理遮挡和姿势变化的人脸时表现出色,降低模型复杂度,并且辅助属性的加入显著降低了检测误差和失败率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Facial Landmark Detection by Deep Multi-task Learning》原文地址及实现代码在文章链接中。


文章提出TCDCN(Tasks-Constrained Deep Convolutional Network),使用与人脸相关的属性共同来学习人脸的特征点位置,通过这种多任务的学习,来提高人脸特征点检测的鲁棒性。具体而言,就是在人脸特征点检测时候,同时进行多个任务(包括性别、是否戴眼镜、是否微笑以及脸部姿势)的学习。使用这些辅助属性可以帮助更好的定位特征点。

这种多任务学习的困难在于:不同的任务有不同的特点,有不同的收敛速度。针对这两个问题,作者给出的解决方法分别是tasks-constrained deep model和task-wise early stopping。文章所提出的方法优于当时已存在的方法,特别是能处理有严重遮挡和姿势变化的情况,而且减少了模型的复杂度。


上图展示了其他辅助属性的检测结果,人脸特征点检测这一任务可以与多个辅助任务同时进行,对比以前的CNN和Cascaded  CNN,文章具有更好的表现性

要点:

(1)对于不同的任务,具有不同的特点,文章给出的解决方法是tasks-constrained deep mo

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值