2017美国数学建模MCM C题(大数据)翻译 “合作和导航”

原创 2017年01月20日 07:20:08

PROBLEM C:“Cooperate and navigate”

Traffic capacity is limited in many regions of the United States due to the number of lanes of roads.

For example, in the Greater Seattle area drivers experience long delays during peak traffic hours

because the volume of traffic exceeds the designed capacity of the road networks. This is particularly

pronounced on Interstates 5, 90, and 405, as well as State Route 520, the roads of particular interest

for this problem.

Self-driving, cooperating cars have been proposed as a solution to increase capacity of highways

without increasing number of lanes or roads. The behavior of these cars interacting with the existing

traffic flow and each other is not well understood at this point.

The Governor of the state of Washington has asked for analysis of the effects of allowing self-driving,

cooperating cars on the roads listed above in Thurston, Pierce, King, and Snohomish counties. (See

the provided map and Excel spreadsheet). In particular, how do the effects change as the

percentage of self-driving cars increases from 10% to 50% to 90%? Do equilibria exist? Is there a

tipping point where performance changes markedly? Under what conditions, if any, should lanes be

dedicated to these cars? Does your analysis of your model suggest any other policy changes?

Your answer should include a model of the effects on traffic flow of the number of lanes, peak and/or

average traffic volume, and percentage of vehicles using self-driving, cooperating systems. Your

model should address cooperation between self-driving cars as well as the interaction between selfdriving

and non-self-driving vehicles. Your model should then be applied to the data for the roads of

interest, provided in the attached Excel spreadsheet.

Your MCM submission should consist of a 1 page Summary Sheet, a 1-2 page letter to the

Governor’s office, and your solution (not to exceed 20 pages) for a maximum of 23 pages. Note: The

appendix and references do not count toward the 23 page limit.

Some useful background information:

 On average, 8% of the daily traffic volume occurs during peak travel hours.

 The nominal speed limit for all these roads is 60 miles per hour.

 Mileposts are numbered from south to north, and west to east.

 Lane widths are the standard 12 feet.

 Highway 90 is classified as a state route until it intersects Interstate 5.

 In case of any conflict between the data provided in this problem and any other source, use the

data provided in this problem.

Definitions:

milepost: A marker on the road that measures distance in miles from either the start of the route or a

state boundary.

average daily traffic: The average number of cars per day driving on the road.

interstate: A limited access highway, part of a national system.

state route: A state highway that may or may not be limited access.

route ID: The number of the highway.

increasing direction: Northbound for N-S roads, Eastbound for E-W roads.

decreasing direction: Southbound for N-S roads, Westbound for E-W roads.

C题中文翻译:

问题C:“合作和导航”

由于道路的数量,美国许多地区的交通容量有限。

例如,在大西雅图地区,司机在交通高峰时段遇到长时间的延误

因为交通量超过了道路网络的设计容量。这是特别

在州际公路5号,90号和405号以及州道路520号,特别感兴趣的道路上发布

对于这个问题。

自动驾驶,合作车已被提出作为增加公路容量的解决方案

而不增加车道或道路的数量。这些汽车的行为与现有的交互

交通流和对方在这一点上还不太了解。

华盛顿州州长要求分析允许自驾的影响,

在Thurston,Pierce,King和Snohomish县上列的道路上合作汽车。 (看到

提供的地图和Excel电子表格)。特别是,效果如何改变

自驾车的百分比从10%增加到50%到90%?是否存在平衡?有没有

性能变化明显的倾翻点?在什么条件下,如果有的话,应该有车道

专用于这些车?您对模型的分析是否表明有任何其他政策变化?

您的答案应包括对车道数量,峰值和/或车道数量的影响的模型

平均交通量,以及使用自动驾驶,合作系统的车辆的百分比。你的

模型应该解决自驾车之间的合作以及自驱动车之间的相互作用

和非自驾车辆。您的模型应该应用于的道路的数据

利息,在附加的Excel电子表格中提供。

您的MCM提交应包含1页的摘要表,1 - 2页的信

总督办公室和您的解决方案(不超过20页),最多23页。注意:

附录和参考文献不计入23页的限制。

一些有用的背景信息:

平均而言,每日交通量的8%发生在高峰旅行时间。

所有这些道路的名义速度限制为每小时60英里。

里程数从南到北,从西到东。

车道宽度是标准的12英尺。

高速公路90被分类为状态路线,直到它与州际5相交。

如果此问题中提供的数据与任何其他来源之间存在冲突,请使用

这个问题提供的数据。

定义:

milepost:在路上测量距离,从路线的起点或a

状态边界。

平均每日交通量:在道路上行驶的平均每天的汽车数量。

州际公路:作为国家系统的一部分的有限进出高速公路。

国家路线:可能受限或不受限制的国家公路。

路由ID:高速公路的编号。

增加方向:N-S道北行,E-W道东行。

下降方向:N-S道南行,E-W道西行。

附件

2017_MCM_Problem_C_Data.xlsx

2017_MCM_Problem_C_Map.pdf

C题重要提示:

The 2016 MCM introduces a new modeling challenge – Problem C - that is best described asData Insights. Problem C is intended to focus on and amplify specific elements of mathematicalmodeling challenges associated with data. In this sense, techniques stemming from statistics andpattern classification will play a larger role in creating a mathematical model on this problem than in previous contests.

While not a ‘big data’ challenge in the sense of teams needing to develop specialized computerscience-based data handling algorithms and analysis techniques or have access to highperformance computing platforms, the problem will provide teams with an opportunity toencounter real-world, challenging data that have interesting characteristics. Naturally occurringcomplicating factors such as data set size (but not big data), blend of data types, breadth ofrepresentation in data elements, cross-discipline sources, time series dependencies, censored ormissing data, and others could present themselves depending on the specifics of the modelingproblem.

MCM Problem C: Data Insights

Teams will be given access to database files that will be made available from a publicwebsite.

The database files will be compressed for size but the file size could still be 100mbs ormore and teams should take this into consideration prior to choosing Problem C.

Each zipped file may include the database files along with the data dictionary, datamapping file, and program code to create value labels.

The database will be made available in multiple formats SAS, SPSS, STATA and CSV.

Software such as Statistica, JMP, SAS, SPSS, Excel, R, Matlab or other applications maybe used to aid in your solution but no one particular piece of software is endorsed orrequired. If specialized software or custom code is used to support the contest effort,teams should take care to clearly communicate an understanding of the mathematics andassumptions applied via tools and algorithms in the software.

When submitting your final electronic solution you are NOT required to submit back thedatabase file or any data for that matter. The only thing that should be submitted is yourelectronic (word or PDF) solution.

COMAP Inc.http://www.comap.com/undergraduate/contests/mcm/flyer/MCM-Problem-C-Overview.pdf

© 2017 COMAP, The Consortium for Mathematics and Its Applications
May be reproduced for academic/research purposes
For More information on COMAP and this project visit http://www.comap.com

更多美赛赛题资料、参考文献见

数学建模与统计建模论坛http://www.mathsccnu.com/forum.php

Mathematical Modelling and Statistical Modelling Forum

美赛板块
http://www.mathsccnu.com/forum.php?mod=forumdisplay&fid=41

版权声明:本文为博主原创文章,未经博主允许不得转载。若需转载,请注明http://blog.csdn.net/qq_30091945 举报

相关文章推荐

STL系列之五 priority_queue 优先级队列

priority_queue 优先级队列是一个拥有权值概念的单向队列queue,在这个队列中,所有元素是按优先级排列的(也可以认为queue是个按进入队列的先后做为优先级的优先级队列——先进入队列的元...

What is a Distributed System?

What is a distributed system?No completely satisfactory definition has been given for a distributed ...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

Nginx+Tomcat 动静分离实现负载均衡

现在假使有一台电脑192.168.8.203这台电脑,上面部署了Tomcat,里面8080端口有J2EE的服务,通过浏览器可以正常浏览网页。现在有一个问题tomcat是一个比较全面的web容器,对静态...

最短路径算法(下)——弗洛伊德(Floyd)算法

概述在这篇博客中我主要讲解最短路径算法中的Floyd算法,这是针对多源最短路径的一个经典算法。对于单源最短路径算法请详见我的另一篇博客:最短路径算法(上)——迪杰斯特拉(Dijikstra)算法弗洛伊...

理解性能的奥秘——应用程序中慢,SSMS中快(6)——SQL Server如何编译动态SQL

本文属于《理解性能的奥秘——应用程序中慢,SSMS中快》系列接上文:理解性能的奥秘——应用程序中慢,SSMS中快(5)——案例:如何应对参数嗅探

我的2013,成功当选微软最有价值专家

伴随着圣诞节的到来,我的2013也即将画上句点,回首这一年,收获颇多。首先,在这一年里我结识了很多优秀的朋友,也从他们身上学到了很多知识和做人的道理。其次,无论从编程技术还是个人成长方面都有了较大幅度...

理解性能的奥秘——应用程序中慢,SSMS中快(5)——案例:如何应对参数嗅探

本文属于《理解性能的奥秘——应用程序中慢,SSMS中快》系列 接上文:理解性能的奥秘——应用程序中慢,SSMS中快(4)——收集解决参数嗅探问题的信息

安卓实现扫一扫识别数字

公司业务需求,需要做手机号码的识别。所以有了此篇文章,现在就将实现过程分享给大家。
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)