题目链接:https://www.patest.cn/contests/gplt/L1-006
题目内容
L1-006. 连续因子
一个正整数N的因子中可能存在若干连续的数字。例如630可以分解为3*5*6*7,其中5、6、7就是3个连续的数字。给定任一正整数N,要求编写程序求出最长连续因子的个数,并输出最小的连续因子序列。
输入格式:
输入在一行中给出一个正整数N(1<N<231)。
输出格式:
首先在第1行输出最长连续因子的个数;然后在第2行中按“因子1*因子2*……*因子k”的格式输出最小的连续因子序列,其中因子按递增顺序输出,1不算在内。
输入样例:630输出样例:
3 5*6*7
解题思路
对于N而言 有两种情况
- N为质数,我们也就只需要输出 1 和 N就足够了
- N为合数,由于1<N<231 而231为2147483648 13!=6227020800 则 若连续数目应不大于13
代码如下:
#include<stdio.h>
#include<math.h>
//质数判断函数
int isPrime( int n )
{
int i;
for ( i = 2; i < sqrt( n ) + 2; i++ )
{
if ( n % i == 0 )
return 0;
}
return 1;
}
int main()
{
int n;
int max_long = 0;
int max_size = 0;
int i, j;
int sum;
//输入数据
scanf( "%d", &n );
//判断是否为质数,若为质数,则输出1和n本身 结束程序
if ( isPrime( n ) )
{
printf( "1\n" );
printf( "%d\n", n );
return 0;
}
for ( i = 2; i < sqrt( n ) + 2; i++ )
{
//判断能否i整除n,减少循环
if ( n % i == 0 )
{
sum = i;
for ( j = i + 1; j < sqrt( n ) + 2; j++ )
{
sum *= j;
//若累乘sum不能整除n,则结束循环
if ( n % sum != 0 )
break;
}
//更新最大长度以及最小位置
if ( max_size < j - i )
{
max_size = j - i;
max_long = i;
}
}
}
//按照要求输出
printf( "%d\n", max_size );
for ( i = max_long; i <= max_long + max_size - 1; i++ )
{
if ( i != max_long )
printf( "*" );
printf( "%d", i );
}
printf( "\n" );
return 0;
}