Agent 生态爆发前夜:一文读懂《AI Agent Protocols》(含 7 大类型+未来趋势)

Agent爆火,催生了一大堆的Agent协议。刚好有一篇综述,进行了全面的对比分析,今天给家人们分享一下具体内容。

图片

什么是 LLM Agent 和 Agent Protocol?

首先快速过一下基础概念。LLM Agent 不仅仅是能生成文本的大模型,它们更像是能自主决策、有记忆、会规划、还能调用外部工具(比如 API、数据库)来完成任务的智能系统。一个典型的 LLM Agent 通常包含:基础模型 (Foundation Model) 提供核心的理解和推理能力;记忆系统 (Memory Systems) 分短期和长期,保证对话连贯和知识积累;规划能力 (Planning) 把复杂任务拆解成小步骤;工具使用 (Tool-Using) 调用外部 API 或工具来弥补自身能力的不足;以及行动执行 (Action Execution) 与环境进行实际交互。

Agent Protocol 就是一套标准化的规则、格式和流程,用来规范 Agent 之间以及 Agent 与外部系统(如数据、工具)的沟通。相比传统的 API、GUI 或 XML 交互方式,Agent Protocol 在效率、操作范围、标准化和 AI 原生性上都有明显优势,是构建复杂、动态、可扩展 Agent 生态系统的关键。它们就像 Agent 世界的通用语言,能打破不同厂商、不同架构 Agent 之间的壁垒,实现互操作性、安全治理,甚至催生出超越单个 Agent 能力的集体智能。

Agent 互联网生态系统的分层架构

Agent Protocol :如何分类?

面对五花八门的 Agent Protocol,这篇综述首次提出了一个清晰的二维分类框架:

  1. 按交互对象 (Object Orientation):分为 Context-Oriented (面向上下文)Inter-Agent (面向 Agent 间) 两种。
  2. 按应用场景 (Application Scenario):分为 General-Purpose (通用)Domain-Specific (特定领域) 两种。

面向上下文的协议 (Context-Oriented Protocols)

这类协议主要解决 Agent 如何从外部世界(数据、工具、服务)获取完成任务所需信息(上下文)的问题。以前主要靠针对特定模型微调函数调用能力,但缺乏标准导致接口五花八门,开发维护成本高。

  • 通用协议代表:MCP (Model Context Protocol) 由 Anthropic 提出,目标是建立一个连接 LLM Agent 和外部资源的通用、开放标准。它采用 Client-Server 架构,将工具调用与 LLM 响应解耦,解决了不同模型和工具提供商带来的碎片化问题,提高了集成性、可扩展性和安全性(比如避免敏感信息直接暴露给云端 LLM)。
  • 特定领域协议:agents.json 这是一个开源的、机器可读的规范,构建在 OpenAPI 之上,让网站可以声明 AI Agent 兼容的接口、认证和多步工作流,方便 Agent 理解和调用网站 API。

面向 Agent 间的协议 (Inter-Agent Protocols)

随着任务越来越复杂,单个 Agent 能力有限,多 Agent 协作成为趋势。这类协议就是为了规范 Agent 之间的沟通、发现和协作。

  • 通用协议群雄逐鹿

    • ANP (Agent Network Protocol):由开源社区推动,愿景是构建一个开放、安全、高效的 Agent 互联网络(“Internet of Agents”),使用 W3C DID 进行身份认证,并有元协议层让 Agent 能自主协商沟通方式。
    • A2A (Agent-to-Agent):Google 提出,面向企业级 Agent 协作,强调简单性(复用 HTTP/JSON-RPC/SSE)、企业级就绪(安全、可追溯)、异步优先和多模态支持。
    • AITP (Agent Interaction & Transaction Protocol):NEAR 提出,利用区块链技术,专注于跨信任边界的 Agent 安全通信、协商和价值交换。
    • AConP (Agent Connect Protocol):Cisco 提出,定义了一套标准的 API 来调用和配置 Agent,主要关注 Agent 的生命周期管理。
    • AComP (Agent Communication Protocol):IBM 提出,旨在标准化实用的通信功能,促进自动化和协作,目前还在设计阶段。
    • Agora:牛津大学提出,试图解决 Agent 通信中的“三难困境”(多样性、效率、可移植性),让 LLM Agent 能根据场景自主协商和选择通信协议(结构化协议、LLM 生成的例程、自然语言)。
  • 特定领域协议:针对特定场景进行优化。

    • *人机交互 (Human-Agent)**:如 **PXP** 协议促进人与 Agent 之间的可理解交互;*LOKA 协议构建去中心化的身份、问责和伦理框架。
    • *机器人-Agent 交互 (Robot-Agent)**:如 **CrowdES** 用于模拟真实人群行为,供机器人交互;*SPPs 用于匿名机器人间的分布式定位。
    • *系统-Agent 交互 (System-Agent)**:如 **LMOS** 提供构建 Agent 互联网的基础架构;*Agent Protocol 定义了控制台与 Agent 交互的通用标准。

一个有意思的观点是,面向上下文和面向 Agent 间的协议可能正在趋同。可以把工具看作低自主性 Agent,而其他 Agent 也可以看作高自主性的“工具”。未来这两类协议可能会更加融合。

如何评价一个 Agent Protocol?

评价协议不能只看当前功能,因为它们迭代很快(比如 MCP 就快速增加了 HTTP 支持和认证)。这篇综述借鉴了互联网协议的评估经验,提出了七个关键维度:

  • 效率 (Efficiency):通信速度快、资源消耗少。关注延迟、吞吐量、资源利用率(包括 LLM 的 token 消耗)。
  • 可扩展性 (Scalability):随着 Agent/工具/网络规模增长,性能是否稳定。关注节点扩展、链路扩展、能力协商的效率。
  • 安全性 (Security):可信交互,包括身份认证、访问控制、数据保护。关注认证方式多样性、权限控制粒度、上下文脱敏机制。
  • 可靠性 (Reliability):通信稳定、准确、容错。关注丢包重传、流量和拥塞控制、持久连接。
  • 可扩展性 (Extensibility):能否在不破坏兼容性的前提下增加新功能。关注向后兼容性、灵活性、定制与扩展能力。
  • 可操作性 (Operability):协议实现、管理和集成的难易程度。关注代码量、部署配置复杂度、可观察性。
  • 互操作性 (Interoperability):能否在不同平台、系统、网络环境间无缝通信。关注跨系统/浏览器兼容性、跨网络/平台适应性。

论文还通过 MCP 的版本迭代和从 MCP 到 ANP/A2A 的演化案例,说明了协议在实践中是如何平衡功能、性能和安全等多个目标的。

实战

为了更直观地理解不同协议,综述里边用了一个“规划 5 天北京到纽约旅行”的案例对比了 MCP, A2A, ANP 和 Agora:

  • MCP:像个大总管。一个中央 Agent (MCP Travel Client) 负责调用所有外部服务(机票、酒店、天气),然后汇总信息生成计划。优点是简单可控,缺点是中心化依赖高,不易扩展。
  • A2A:像个部门协作。任务被分配给专门的 Agent(交通、住宿、活动),这些 Agent 可以直接相互沟通(比如机票 Agent 直接问天气 Agent 获取信息),最后由一个协调者汇总。更灵活,适合企业内复杂协作。
  • ANP:像跨公司合作。不同领域的 Agent(航空公司、酒店、天气网站)通过标准化的协议进行跨域交互和协商。适合独立 Agent 之间基于明确接口的协作。
  • Agora:像个智能翻译官。先用自然语言理解用户需求,然后生成标准化的协议分发给各个专业 Agent(机票、酒店、天气、预算)。将自然语言处理与 Agent 执行分离,适应性强。

这个案例展示了不同协议的设计哲学和适用场景:MCP 适合流程固定的任务;A2A 适合需要灵活内部协作的场景;ANP 擅长跨域标准化交互;Agora 则聚焦于从自然语言到协议的智能转换。

未来展望:Agent Protocol 路向何方?

Agent Protocol 的发展才刚刚开始,未来充满想象空间:

  • 短期 (From Static to Evolvable):

    • 需要更完善的评估基准和测试平台
    • 隐私保护协议将越来越重要,如何在协作中保护敏感数据是个关键问题。
    • 可能出现Agent Mesh Protocol,支持群组通信,提高协作效率。
    • 可演化协议,让 Agent 能像学习技能一样学习、组合甚至创造协议。
  • 中期 (From Rules to Ecosystems):

    • 将协议知识内置到 LLM 参数中,让 Agent “天生就会”遵循协议,但这会牺牲一些灵活性。
    • 分层协议架构,类似网络协议栈,解耦不同层面的通信关注点,提高模块化和互操作性。
  • 长期 (From Protocols to Intelligence Infrastructure):

    • 探索大规模 Agent 网络中的集体智能涌现和Scaling Laws。
    • 可能诞生专门的Agent 数据网络 (ADN),作为优化 Agent 间通信和协调的基础设施。

综述地址:https://arxiv.org/pdf/2504.16736v2

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值