【题目描述】
台阶共有M阶,一步可以走1阶、2阶、……、N阶,求有多少种不同的通过台阶的方案。
【输入格式】
两个整数N,M
【输出格式】
一个整数 ANS 表示所有非负整数对(X1,X2,。。。Xn)的个数,如果答案超过了9位数,你只需输出ANS mod 10^9的值即可。
【样例输入】
5 5
【样例输出】
7
【数据范围】
1<=N<=1000,0<=M<=1000
【分析】
设f[i,j]表示一步可以走1~i阶,共走j阶的方案数。
若走了j阶,则一步走i阶的次数为0~j div i。故f[i,j]=sum{f[i-1,j-k*i]}(k=0..j div i),最后模上10^9即可。
另外注意初始值的情况。
var
f:array[0..1001,0..1001]of longint;
i,j,k,n,m:longint;
begin
readln(n,m);
for i:=1 to n do begin f[i,0]:=1;f[i,1]:=1; end;
for j:=1 to m do begin f[0,j]:=1;f[1,j]:=1; end;
for i:=2 to n do
for j:=2 to m do
for k:=0 to j div i do f[i,j]:=(f[i,j]+f[i-1,j-k*i]) mod 1000000000;
write(f[n,m]);
end.