# POJ 1085 Triangle War（极大极小搜索+alpha-beta剪枝）

//
//  main.cpp
//  Richard
//
//  Created by 邵金杰 on 16/8/29.
//

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int map[11][11]={
{0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,1,0,0,0,0,0,0,0},
{0,0,0,2,3,4,0,0,0,0,0},
{0,1,2,0,0,5,6,0,0,0,0},
{0,0,3,0,0,7,0,9,10,0,0},
{0,0,4,5,7,0,8,0,11,12,0},
{0,0,0,6,0,8,0,0,0,13,14},
{0,0,0,0,9,0,0,0,15,0,0},
{0,0,0,0,10,11,0,15,0,16,0},
{0,0,0,0,0,12,13,0,16,0,17},
{0,0,0,0,0,0,14,0,0,17,0}
};
int State=(1<<18)-1;
int tri[9]={7,152,52,352,34304,3200,71680,12544,155648};
int get_States(int state,int seg,int &cnt)
{
int now=state|seg;
for(int i=0;i<9;i++)
{
if((state&tri[i])!=tri[i]&&(now&tri[i])==tri[i])
cnt++;
}
return now;
}
int MinSearch(int state,int alpha,int a,int b);
int MaxSearch(int state,int beta ,int a,int b);
int MinSearch(int state,int alpha,int a,int b)
{
if(a>=5) return 1;
if(b>=5) return -1;
if(state==State) return a>b?1:-1;
int ans=1;
int reminds=(~state)&State;
while(reminds)
{
int seg=reminds&(-reminds);
int tb=b;
int temp=get_States(state,seg,tb);
int tp;
if(tb>b)
tp=MinSearch(temp,alpha,a,tb);
else
tp=MaxSearch(temp,ans,a,tb);
ans=min(ans,tp);
if(ans<=alpha) return ans;
reminds-=seg;
}
return ans;
}
int MaxSearch(int state,int beta,int a,int b)
{
if(a>=5) return 1;
if(b>=5) return -1;
if(state==State) return a>b?1:-1;
int ans=-1;
int reminds=(~state)&State;
while(reminds)
{
int seg=reminds&(-reminds);
int ta=a;
int temp=get_States(state,seg,ta);
int tp;
if(ta>a)
tp=MaxSearch(temp,beta,ta,b);
else
tp=MinSearch(temp,ans,ta,b);
ans=max(ans,tp);
if(ans>=beta) return ans;
reminds-=seg;
}
return ans;
}
int main()
{
int t,kase=0;
scanf("%d",&t);
while(t--)
{
int m;
scanf("%d",&m);
int x,y;
int state=0;
int a=0,b=0;
int cnt=0;
for(int i=0;i<m;i++)
{
scanf("%d%d",&x,&y);
int ta=a,tb=b;
state=get_States(state,1<<map[x][y],(cnt&1)?b:a);
if(ta==a&&tb==b) cnt++;
}
int ans;
if(cnt&1) ans=MinSearch(state,-1,a,b);
else ans=MaxSearch(state,1,a,b);
printf("Game %d: %c wins.\n",++kase,ans==1?'A':'B');
}
return 0;
}

• 本文已收录于以下专栏：

## 极大极小树的剪枝算法1 alpha-beta剪枝

Alpha-Beta 剪枝算法用于减小极大极小算法所搜索的节点数目，Alpha-Beta 剪枝算法的效率很大依赖于节点的排列，在理想的排序下，算法复杂度为O（b^(d/2)）,可以使搜索节点的数量减小...
• u012501320
• 2014年05月05日 20:22
• 6071

## 五子棋（二）极大极小搜索 + 剪枝

• u013351484
• 2016年05月15日 20:44
• 1619

## 博弈（alpha-beta 剪枝）POJ —— 1085 Triangle War

• u013351484
• 2016年03月05日 20:24
• 851

## 零和博弈-极大极小搜索&Alpha-Beta剪枝（井字游戏）

• hffhjh111
• 2017年06月08日 15:38
• 730

## 五子棋AI博弈树之带Alpha-Beta剪枝的极大极小过程函数

﻿﻿ 在博弈树的极大极小过程中是对每一个树节点(称它为全局搜索吧)都要计算其估值，然后在这些估值中做出选择。如果搜索比较大的话，全局搜索的方式效率会非常低，因为有一些节点根本不需要搜索。那么怎么...
• 2014年05月23日 17:52
• 4751

## POJ - 1085 Triangle War 极小极大搜索+alpha-beta剪枝

• ACVector
• 2017年10月01日 23:10
• 79

## 极小极大值方法以及alpha-Beta剪枝

• abc8350712
• 2017年02月26日 17:12
• 421

## 极小化极大算法及Alpha-beta剪枝

• Lingshu_M
• 2018年01月16日 00:38
• 28

## POJ 1085 Triangle War 极大极小+剪枝 -

• qq_34446253
• 2016年09月10日 22:52
• 111

## poj 1085 Triangle War 极大极小搜索

Description给定一个三角形矩阵如下 两个人每次每人可以把一条虚线涂黑，若操作后的一条边与另外两条邻边形成一个三角形就能再操作一次，每次操作的得分为此次操作形成的新的三角形。现在给定一些...
• jpwang8
• 2017年11月24日 17:55
• 53

举报原因： 您举报文章：POJ 1085 Triangle War（极大极小搜索+alpha-beta剪枝） 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)