POJ 1085 Triangle War(极大极小搜索+alpha-beta剪枝)

原创 2016年08月29日 14:12:58
//
//  main.cpp
//  Richard
//
//  Created by 邵金杰 on 16/8/29.
//  Copyright © 2016年 邵金杰. All rights reserved.
//


#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int map[11][11]={
    {0,0,0,0,0,0,0,0,0,0,0},
    {0,0,0,1,0,0,0,0,0,0,0},
    {0,0,0,2,3,4,0,0,0,0,0},
    {0,1,2,0,0,5,6,0,0,0,0},
    {0,0,3,0,0,7,0,9,10,0,0},
    {0,0,4,5,7,0,8,0,11,12,0},
    {0,0,0,6,0,8,0,0,0,13,14},
    {0,0,0,0,9,0,0,0,15,0,0},
    {0,0,0,0,10,11,0,15,0,16,0},
    {0,0,0,0,0,12,13,0,16,0,17},
    {0,0,0,0,0,0,14,0,0,17,0}
};
int State=(1<<18)-1;
int tri[9]={7,152,52,352,34304,3200,71680,12544,155648};
int get_States(int state,int seg,int &cnt)
{
    int now=state|seg;
    for(int i=0;i<9;i++)
    {
        if((state&tri[i])!=tri[i]&&(now&tri[i])==tri[i])
            cnt++;
    }
    return now;
}
int MinSearch(int state,int alpha,int a,int b);
int MaxSearch(int state,int beta ,int a,int b);
int MinSearch(int state,int alpha,int a,int b)
{
    if(a>=5) return 1;
    if(b>=5) return -1;
    if(state==State) return a>b?1:-1;
    int ans=1;
    int reminds=(~state)&State;
    while(reminds)
    {
        int seg=reminds&(-reminds);
        int tb=b;
        int temp=get_States(state,seg,tb);
        int tp;
        if(tb>b)
            tp=MinSearch(temp,alpha,a,tb);
        else
            tp=MaxSearch(temp,ans,a,tb);
        ans=min(ans,tp);
        if(ans<=alpha) return ans;
        reminds-=seg;
    }
    return ans;
}
int MaxSearch(int state,int beta,int a,int b)
{
    if(a>=5) return 1;
    if(b>=5) return -1;
    if(state==State) return a>b?1:-1;
    int ans=-1;
    int reminds=(~state)&State;
    while(reminds)
    {
        int seg=reminds&(-reminds);
        int ta=a;
        int temp=get_States(state,seg,ta);
        int tp;
        if(ta>a)
            tp=MaxSearch(temp,beta,ta,b);
        else
            tp=MinSearch(temp,ans,ta,b);
        ans=max(ans,tp);
        if(ans>=beta) return ans;
        reminds-=seg;
    }
    return ans;
}
int main()
{
    int t,kase=0;
    scanf("%d",&t);
    while(t--)
    {
        int m;
        scanf("%d",&m);
        int x,y;
        int state=0;
        int a=0,b=0;
        int cnt=0;
        for(int i=0;i<m;i++)
        {
            scanf("%d%d",&x,&y);
            int ta=a,tb=b;
            state=get_States(state,1<<map[x][y],(cnt&1)?b:a);
            if(ta==a&&tb==b) cnt++;
        }
        int ans;
        if(cnt&1) ans=MinSearch(state,-1,a,b);
        else ans=MaxSearch(state,1,a,b);
        printf("Game %d: %c wins.\n",++kase,ans==1?'A':'B');
    }
    return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

POJ 1085 Triangle War(博弈,極大極小搜索+alpha_beta剪枝)

转载请注明出处,谢谢 http://blog.csdn.net/ACM_cxlove?viewmode=contents           by---cxlove 題目:給出10個點...

poj 1085 Triangle War 1568 Find the Winning Move 极大极小搜索 alpha-beta剪枝

一,极大极小搜索及alpha-beta剪枝

Poj 1085 Triangle War (极大极小搜索)

题目链接:http://poj.org/problem?id=1085   题意:两个人轮流在九个小正三角形组成的大三角形上面选取边,如果当前选择的边刚好为某些三角形最后一个未选取的边,则该玩家得...

POJ 1568 Find the Winning Move(极小极大搜索+alpha-beta剪枝)

转载请注明出处,谢谢http://blog.csdn.net/acm_cxlove/article/details/7854526       by---cxlove  题目:给出一个4*4的格...

pku1085 Triangle War 完全极大极小搜索+状压DP

黑书入门题,我们记录下每一个状态,状态为每条边是否用上,然后记忆化搜索所有状态 WA了一次,因为搜索的时候给状态的值的时候写成了一共的三角形数量而不是双方的最大差值 时间复杂度为2^18*8*17...

POJ 1085 Triangle War 极小极大值算法+α-β剪枝

用极小极大值算法解决比较直观,但是效率太低,即使使用了α-β剪枝,效率仍然很低,勉强ACCEPT,因为这种方法本质上是深度搜索,会有大量的重复计算,如果像DP那样将计算过的状态记录下来,则还有进一步优...

零和博弈-极大极小搜索&Alpha-Beta剪枝(井字游戏)

零和博弈概念 二人利益对立完备信息博弈过程,在我们分析表达中就是对一个过程进行按规定双方交替操作,每次操作即搜索时选择对自己有利的情况(获益选最大,损失选最小),借助的数据结构自然是树。博弈树中每一...

基于极大极小算法和alpha-beta剪枝实现AI井字棋

关于极大极小算法和alpha-beta剪枝可以参考文章的参考资料,这里仅对其进行代码实现。其实这个算法单纯的理解并不容易,下面用代码进行实现。说一下实现这个AI井字棋的思路:简单的来说就是计算机希望估...

极大极小树的剪枝算法1 alpha-beta剪枝

Alpha-Beta 剪枝算法用于减小极大极小算法所搜索的节点数目,Alpha-Beta 剪枝算法的效率很大依赖于节点的排列,在理想的排序下,算法复杂度为O(b^(d/2)),可以使搜索节点的数量减小...

极小极大搜索方法、负值最大算法和Alpha-Beta搜索方法

1. 极小极大搜索方法     一般应用在博弈搜索中,比如:围棋,五子棋,象棋等。结果有三种可能:胜利、失败和平局。暴力搜索,如果想通过暴力搜索,把最终的结果得到的话,搜索树的深度太大了,机器不能满...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)