数据结构与算法之Alpha-Beta剪枝

Alpha-Beta剪枝算法是一种用于搜索树的算法,用于减少搜索树的搜索次数和搜索深度,从而提高搜索效率。

Alpha表示当前节点能够保证的最小值,Beta表示当前节点能够保证的最大值。在搜索树的遍历过程中,如果一个节点的Alpha值大于等于Beta值,则该节点的子树不需要再进行搜索,因为该节点从父节点传递下来的值已经大于等于(或小于等于)了一个比它大(或小)的值,不可能再对答案产生影响。

具体实现时,Alpha和Beta值会不断地被更新传递到子节点,并在子节点被搜索完后回溯到父节点继续更新Alpha和Beta值。

Alpha-Beta剪枝算法是一种启发式算法,不能保证一定找到最优解,但它能在很短的时间内找到一个足够接近最优解的解。

在这里插入图片描述



一、C Alpha-Beta剪枝 源码实现及详解

Alpha-Beta剪枝是一种搜索算法,用于减少博弈树搜索的复杂度。在这种算法中,我们会基于“alpha”和“beta”两个变量来剪枝。

“alpha”表示当前节点所能够保证的最小值,“beta”表示当前节点所能够保证的最大值。在搜索过程中,我们不断更新“alpha”和“beta”的值,并利用它们来剪枝。

以下是一个C++实现的Alpha-Beta剪枝代码,其中Search函数是搜索函数,Eval函数是对当前局面得到估值的函数。

const int INF = 1e9;

int Search(int depth, int alpha, int beta) {
    if (depth == 0) return Eval();
    int best = -INF;
    for (int i = 0; i < moves.size(); i++) {
        MakeMove(moves[i]);
        int score = -Search(depth - 1, -beta, -alpha);
        UnmakeMove(moves[i]);
        best = max(best, score);
        alpha = max(alpha, score);
        if (alpha >= beta) break;
    }
    return best;
}

int AlphaBeta(int depth) {
    int alpha = -INF, beta = INF;
    return Search(depth, alpha, beta);
}

在上面的代码中,我们使用递归的方式对博弈树进行搜索。在每一层的搜索中,我们先检查当前搜索深度是否已经达到最大深度,如果是,直接返回当前局面的估值。

否则,我们枚举所有可能的落子,对每个落子进行尝试,并计算出其对应的分数。在搜索的过程中,我们采用了Alpha-Beta剪枝的思想。

具体来说,我们利用当前节点已经得到的最大值“alpha”和最小值“beta”来进行剪枝。如果当前搜索到的分数“score”已经大于等于“beta”,那么我们可以直接剪枝并返回当前已经得到的最大值“best”。

如果当前搜索到的分数“score”大于“alpha”,那么我们可以更新“alpha”的值。这样,如果后续搜索到的分数小于“alpha”,就可以进行剪枝。

最后,如果所有的落子都搜索完了,就返回当前已经得到的最大分数“best”。

需要注意的是,这个算法只能用于双人零和博弈。具体来说,您需要在Eval函数中返回当前局面相对于自己的得分。对于能够同时使得自己得到高分的情况,应返回正数;而对于能够使对手得分更高的情况,应返回负数。

此外,为了提高搜索的效率,您可以使用启发式搜索(例如Alpha-Beta搜索的加强版PVS,或使用置换表、杀手启发式等技术)。

在这里插入图片描述



二、C++ Alpha-Beta剪枝 源码实现及详解

Alpha-Beta剪枝是一种广泛使用的博弈树搜索算法,用于有效减少搜索空间。本文将介绍如何使用C++实现Alpha-Beta剪枝算法,并详细讲解其原理和实现流程。

  1. Alpha-Beta剪枝原理

在博弈树搜索中,Alpha-Beta剪枝算法是一种优化搜索的方法,可以减少搜索空间。Alpha表示当前玩家能够保证的最小值,Beta表示当前对手能够保证的最大值。在搜索过程中,如果一个节点的值已经超出了Alpha-Beta的范围,即当前节点的值大于Beta或小于Alpha,那么该节点就不必搜索它的子节点。因为对于当前玩家来说,该节点已经不是最优解。这样可以有效减少搜索空间,提高搜索效率。

  1. Alpha-Beta剪枝实现流程

Alpha-Beta剪枝算法的实现流程如下:

1)定义一个递归函数,用于搜索博弈树;

2)递归终止条件:到达叶子节点或达到搜索深度限制;

3)根据当前玩家的走法,更新Alpha或Beta的值;

4)递归搜索子节点,并记录子节点的值;

5)根据当前玩家的走法,更新Alpha或Beta的值;

6)根据Alpha-Beta的范围,判断是否可以剪枝;

7)返回子节点的值。

  1. Alpha-Beta剪枝实现示例

下面是一个简单的示例程序,演示了如何使用C++实现Alpha-Beta剪枝算法。这个示例程序使用一个棋盘游戏(五子棋)作为博弈树,并展示了如何找到最优解。

#include <iostream>
#include <vector>
using namespace std;

const int BOARD_SIZE = 15;
const int SEARCH_DEPTH = 5;

// 棋盘上的位置
struct Point {
    int x;
    int y;
};

// 棋盘
class Board {
public:
    Board() {
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值