HDU 3987 Harry Potter and the Forbidden Forest

原创 2016年08月31日 11:18:24

Description

Harry Potter notices some Death Eaters try to slip into Castle. The Death Eaters hide in the most depths of Forbidden Forest. Harry need stop them as soon as. 

The Forbidden Forest is mysterious. It consists of N nodes numbered from 0 to N-1. All of Death Eaters stay in the node numbered 0. The position of Castle is node n-1. The nodes connected by some roads. Harry need block some roads by magic and he want to minimize the cost. But it’s not enough, Harry want to know how many roads are blocked at least.

Input

Input consists of several test cases. 

The first line is number of test case. 

Each test case, the first line contains two integers n, m, which means the number of nodes and edges of the graph. Each node is numbered 0 to n-1. 

Following m lines contains information about edges. Each line has four integers u, v, c, d. The first two integers mean two endpoints of the edges. The third one is cost of block the edge. The fourth one means directed (d = 0) or undirected (d = 1). 

Technical Specification 

1. 2 <= n <= 1000 
2. 0 <= m <= 100000 
3. 0 <= u, v <= n-1 
4. 0 < c <= 1000000 
5. 0 <= d <= 1 

Output

For each test case: 
Output the case number and the answer of how many roads are blocked at least. 

Sample Input

3

4 5
0 1 3 0
0 2 1 0
1 2 1 1
1 3 1 1
2 3 3 1

6 7
0 1 1 0
0 2 1 0
0 3 1 0
1 4 1 0
2 4 1 0
3 5 1 0
4 5 2 0

3 6
0 1 1 0
0 1 2 0
1 1 1 1
1 2 1 0
1 2 1 0
2 1 1 1

Sample Output

Case 1: 3
Case 2: 2
Case 3: 2

这题是求割边最小的最小割问题,我们要了解两个性质,一个是最小割边一定满流,满流的不一定是最小割边。还有一个就是最大流等于最小割。

我们先求一遍最大流,这时满流的就可能是最小割边,我们要求最少有多少条边,就相当于求最小割就可以转换成求最大流,也就是把满流的那条边的容量设为1,其他的设为无穷,这时最大流的值也就是最小割的值就等于最小割边数(因为最小割就相当于最小割去多少容量,而1容量就代表一条边)。

#include <stdio.h>
#include <string.h>
#include <queue>
using namespace std;

const int maxn=1100;
const int maxm=500000+10;

const int INF=0x3f3f3f3f;

int min(int x,int y)
{
	if(x<y)
		return x;
	else
		return y;
}

struct node {  
    int u, v, cap, flow, next;  
};  
node edge[maxm];  
int dist[maxn], head[maxn], cur[maxn];  
bool vis[maxn];  
int cnt;

void init(){  
    cnt = 0;  
    memset(head, -1, sizeof(head));  
}  
  
void add(int u, int v, int w){  
	edge[cnt].u=u;
	edge[cnt].v=v;
	edge[cnt].cap=w;
	edge[cnt].flow=0;
	edge[cnt].next=head[u];
    head[u] = cnt++;
	edge[cnt].u=v;
	edge[cnt].v=u;
	edge[cnt].cap=0;
	edge[cnt].flow=0;
	edge[cnt].next=head[v];  
    head[v] = cnt++;  
}  

bool BFS(int st, int ed){
    queue<int>q;
    memset(vis, 0 ,sizeof(vis));
    memset(dist, -1, sizeof(dist));
    q.push(st);
    dist[st] = 0;
    vis[st] = 1;
    while(!q.empty()){
        int u = q.front();
        q.pop();
        for(int i = head[u]; i != -1; i = edge[i].next){
            node E = edge[i];  
            if(!vis[E.v] && E.cap > E.flow){  
                vis[E.v] = 1;  
                dist[E.v] = dist[u] + 1;  
                if(E.v == ed) return true;  
                q.push(E.v);  
            }  
        }  
    }  
    return false;  
}  

int DFS(int x, int ed, int a){  
    if(a == 0 || x == ed)  
        return a;  
    int flow = 0, f;  
    for(int &i = cur[x]; i != -1; i = edge[i].next){  
        node &E = edge[i];
        if(dist[E.v] == dist[x] + 1 && (f = DFS(E.v, ed, min(a, E.cap - E.flow))) > 0){
            E.flow += f;
            edge[i ^ 1].flow -= f;
            a -= f;
            flow += f;
            if(a == 0) break;
        }
    }
    return flow;  
}  
  
int maxflow(int st, int ed){  
    int flow = 0;  
    while(BFS(st, ed)){  
        memcpy(cur, head, sizeof(head));  
        flow += DFS(st, ed, INF);  
    }  
    return flow;  
}

int main()
{
	int t,icase;
	scanf("%d",&t);
	for(icase=1;icase<=t;icase++)
	{
		init();
		int n,m;
		scanf("%d%d",&n,&m);
		int i,j;
		for(i=0;i<m;i++)
		{
			int u,v,c,d;
			scanf("%d%d%d%d",&u,&v,&c,&d);
			add(u,v,c);
			if(d==1)
				add(v,u,c);
		}
		maxflow(0,n-1);
		for(i=0;i<cnt;i+=2)
		{
			if(edge[i].cap==edge[i].flow)
			{
				edge[i].cap=1;
				edge[i].flow=0;
				edge[i^1].cap=0;
				edge[i^1].flow=0;
			}
			else
			{
				edge[i].cap=INF;
				edge[i].flow=0;
				edge[i^1].cap=0;
				edge[i^1].flow=0;
			}
		}
		int ans=maxflow(0,n-1);
		printf("Case %d: %d\n",icase,ans);
	}
	return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

hdu 3987 Harry Potter and the Forbidden Forest 求将s和t隔开的最少费用下的最小边数 最小割

Problem Description Harry Potter notices some Death Eaters try to slip into Castle. The Death Eater...

HDU3987 Harry Potter and the Forbidden Forest最小割最少边Dinic

Harry Potter and the Forbidden Forest Time Limit: 5000/3000 MS (Java/Others) Memory Limit: 65536/65...

HDU 3987 Harry Potter and the Forbidden Forest

最小割

【最小割】HDU 3987 Harry Potter and the Forbidden Forest

得到的最小割得到sum  sum/

【HDU】3987 Harry Potter and the Forbidden Forest 最小割

Harry Potter and the Forbidden Forest Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65536...

HDU 3987 Harry Potter and the Forbidden Forest 最小割

/* 很经典的最大流最小割的题目 题意:求最小割,但因为最小割是不唯一的,题目要求得到最小割的条件下使得割边最少 搜到usaco类似的一个题目才出的,构造很巧妙 建边的时候每条边权 w=w*(E+1...

HDU--3987[Harry Potter and the Forbidden Forest] 求最小割集中的最小边数

比赛时硬是不会,一开始还打算先找一个最小割,然后删一条边在找一次用来确定当前枚举的这条边是不是所求边数最少的割集中的边。不知道可不可行,反正到最后还是没搞出来。赛后才知道原来有巧妙的构造方法可以直接一...

HDU3987 Harry Potter and the Forbidden Forest(最小割)

Harry Potter and the Forbidden Forest Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65536/...

hdu 3987 Harry Potter and the Forbidden Forest

求最小割集的最少边数。 很神的方法 http://hi.baidu.com/mengyun1993/blog/item/c30d193c9a85932870cf6cda.html 用的党的模板。 ...

hdu 3987 Harry Potter and the Forbidden Forest

最小割: 我用的比较传统的方法,因为最小割=最大流,所以可以先用sap预处理一下图,找出满流的边,在把这下满流的边的权值更改为1,其余的变成inf,再跑一遍sap即可得到答案。 #in...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)