【机器学习-决策树模块-基础算法-1)ID3算法】

决策树最最最基础的三个算法:

 对于什么是决策树,决策树的基本概念网上已经多的不能再多了这里不再赘述,直接切入正题,决策树的算法以及实现。
至于遇到的必须要掌握的信息论相关知识,我会在这篇文章里根据自己遇到的知识来持续更新:
-------------------------------------------------------------------------------------------------------------------------

一.ID3

· ID3算法是由Quinlan首先提出的,该算法以信息论为基础,以信息熵和信息增益为衡量标准,从而实现对数据的归纳分类。首先,ID3算法需要解决的问题是如何选择特征作为划分数据集的标准。在ID3算法中,选择信息增益最大的属性作为当前的特征对数据集分类。就是对各个feature信息计算信息增益,然后选择信息增益最大的feature作为决策点将数据分成两部分然后再对这两部分分别生成决策树。

 ·通过迭代的方式,我们可以得到决策树模型。

      
 
 ·至于什么是ID3决策树的终止条件以及其它的问题,还是放到例子里进行理解:(最近数学建模需要,用matlab代码,   python代码需要的可以看这篇博客:机器学习实战_初识决策树算法_理解其python代码(一)
----------------------------------------------------------------------------------------------------------------------------

·实例:

   实例:通过这几个指标(age,income,等等)来判断是否买电脑。
共14条记录,目标属性是,是否买电脑,共有两个情况,yes或者no。
首先需要对数据处理,例如age属性,我们用0表示youth,1表示middle_aged,2表示senior等。

 ·实例的MATLAB代码:
%% Decision Tree
% ID3

·1、导入数据
%data = [1,1,1;1,1,1;1,0,0;0,1,0;0,1,0]; 
data = [0,2,0,0,0;
    0,2,0,1,0;
    1,2,0,0,1;
    2,1,0,0,1;
    2,0,1,0,1;
    2,0,1,1,0;
    1,0,1,1,1;
    0,1,0,0,0;
    0,0,1,0,1;
    2,1,1,0,1;
    0,1,1,1,1;
    1,1,0,1,1;
    1,2,1,0,1;
    2,1,0,1,0];
% 生成决策树createTree(data);

·2、开始创建决策树

%CREATTREE 此处显示有关此函数的摘要
%   此处显示详细说明
function [ output_args ] = createTree( data )
    [m,n] = size(data);%m行n列
    disp('original data:');
    disp(data);%显示导入的数据
    classList = data(:,n);
    %记录第一个类的个数:
    classOne = 1;
    for i = 2:m
        if classList(i,:) == classList(1,:)
            classOne = classOne+1;
        end
    end
    
    % 类别全相同
    if classOne == m
        disp('final data: ');
        disp(data);
        return;
    end
    
    % 特征全部用完
    if n == 1
        disp('final data: ');
        disp(data);
        return;
    end
    
    bestFeat = chooseBestFeature(data);%% 选择信息增益最大的特征
    disp(['bestFeat: ', num2str(bestFeat)]);
    featValues = unique(data(:,bestFeat));
    numOfFeatValue = length(featValues);
    
    for i = 1:numOfFeatValue
        createTree(splitData(data, bestFeat, featValues(i,:)));
        disp('-------------------------');
    end
end
·3、选择信息增益最大的特征
%% 选择信息增益最大的特征
function [ bestFeature ] = chooseBestFeature( data )
    [m,n] = size(data);% 得到数据集的大小
    
    % 统计特征的个数
    numOfFeatures = n-1;%最后一列是类别
    % 得到原始的熵
    baseEntropy = calEntropy(data);
    
    bestInfoGain = 0;%初始化信息增益
    bestFeature = 0;% 初始化最佳的特征位
    
    % 挑选最佳的特征位
    for j = 1:numOfFeatures
        featureTemp = unique(data(:,j));%得到每个feature的属性
        numF = length(featureTemp);%属性的个数
        newEntropy = 0;%划分之后的熵
        for i = 1:numF
            subSet = splitData(data, j, featureTemp(i,:));
            [m_1, n_1] = size(subSet);
            prob = m_1./m;
            newEntropy = newEntropy + prob * calEntropy(subSet);%计算划分之后的熵,此时的subSet里的变量只有一个值(这样复用函数对计算的效率会有点影响)
        end
        
        %计算信息增益(熵 - 条件熵)
        infoGain = baseEntropy - newEntropy;
        
        if infoGain > bestInfoGain
            bestInfoGain = infoGain;
            bestFeature = j;
        end
    end
end
4、一些基础的计算函数

function [ entropy ] = calEntropy( data )
    [m,n] = size(data);
    
    % 得到类别的项
    label = data(:,n);
    
    % 处理label
    label_deal = unique(label);%得到所有的类别
    
    numLabel = length(label_deal);
    prob = zeros(numLabel,2);%存储每个标签的个数
    
    % 统计每个标签的个数
    for i = 1:numLabel
        prob(i,1) = label_deal(i,:);
        for j = 1:m
            if label(j,:) == label_deal(i,:)
                prob(i,2) = prob(i,2)+1;
            end
        end
    end
    
    % 计算熵
    prob(:,2) = prob(:,2)./m;%存储每个标签的概率
    entropy = 0;
    for i = 1:numLabel
        entropy = entropy - prob(i,2) * log2(prob(i,2));
    end
end
function [ subSet ] = splitData( data, axis, value )  
    [m,n] = size(data);%得到待划分数据的大小  
      
    subSet = data;  
    %除去第axis个feature,得到剩下的满足第axis列值为value的data 
    subSet(:,axis) = []; 
    k = 0;  
    for i = 1:m  
        if data(i,axis) ~= value  
            subSet(i-k,:) = [];  
            k = k+1;  
        end  
    end     
从这个例子来看,ID3决策树还是很简单的,就是通过计算信息增益来得到最有价值的那个feature,这样不断迭代,直到遍历完所有的features,从而得到决策树。
决策树ID3算法的不足:
    ID3算法虽然提出了新思路,但是还是有很多值得改进的地方。  
    a)ID3没有考虑连续特征,比如长度,密度都是连续值,无法在ID3运用。这大大限制了ID3的用途。
    b)ID3采用信息增益大的特征优先建立决策树的节点。很快就被人发现,在相同条件下,取值比较多的特征比取值少的特征信息增益大。比如一个变量有2个值,各为1/2,另一个变量为3个值,各为1/3,其实他们都是完全不确定的变量,但是取3个值的比取2个值的信息增益大。如果校正这个问题呢?
    c) ID3算法对于缺失值的情况没有做考虑
    d) 没有考虑过拟合的问题
end
-------------------------------------------------------------------------------------------------------------------------

ID3 算法的作者昆兰基于上述不足,对ID3算法做了改进,这就是C4.5算法:

http://blog.csdn.net/qq_36396104/article/details/79291740

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智慧地球(AI·Earth)社区

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值