【第22期】观点:IT 行业加班,到底有没有价值?

【动态规划·经典例题】鸡蛋的硬度

原创 2017年01月03日 16:03:16

鸡蛋的硬度


总时间限制: 1000ms

内存限制: 65536kB


描述

最近XX公司举办了一个奇怪(super strange!)的比赛:鸡蛋硬度之王争霸赛。参赛者是来自世 界各地的母鸡,比赛的内容是看谁下的蛋最硬,更奇怪的是XX公司并不使用什么精密仪器来测量蛋的硬度,他们采用了一种最老土的办法--从高度扔鸡蛋--来 测试鸡蛋的硬度,如果一次母鸡下的蛋从高楼的第a层摔下来没摔破,但是从a+1层摔下来时摔破了,那么就说这只母鸡的鸡蛋的硬度是a。你当然可以找出各种 理由说明这种方法不科学,比如同一只母鸡下的蛋硬度可能不一样等等,但是这不影响XX公司的争霸赛,因为他们只是为了吸引大家的眼球,一个个鸡蛋从100 层的高楼上掉下来的时候,这情景还是能吸引很多人驻足观看的,当然,XX公司也绝不会忘记在高楼上挂一条幅,写上“XX公司”的字样--这比赛不过是XX 公司的一个另类广告而已。 
勤于思考的小A总是能从一件事情中发现一个数学问题,这件事也不例外。“假如有很多同样硬度的鸡蛋,那么我可以用二分的办法用最少的次数测出鸡蛋 的硬度”,小A对自己的这个结论感到很满意,不过很快麻烦来了,“但是,假如我的鸡蛋不够用呢,比如我只有1个鸡蛋,那么我就不得不从第1层楼开始一层一 层的扔,最坏情况下我要扔100次。如果有2个鸡蛋,那么就从2层楼开始的地方扔……等等,不对,好像应该从1/3的地方开始扔才对,嗯,好像也不一定 啊……3个鸡蛋怎么办,4个,5个,更多呢……”,和往常一样,小A又陷入了一个思维僵局,与其说他是勤于思考,不如说他是喜欢自找麻烦。 
好吧,既然麻烦来了,就得有人去解决,小A的麻烦就靠你来解决了:)

输入

输入包括多组数据,每组数据一行,包含两个正整数n和m(1<=n<=100,1<=m<=10),其中n表示楼的高度,m表示你现在拥有的鸡蛋个数,这些鸡蛋硬度相同(即它们从同样高的地方掉下来要么都摔碎要么都不碎),并且小于等于n。你可以假定硬度为x的鸡蛋从高度小于等于x的地方摔无论如何都不会碎(没摔碎的鸡蛋可以继续使用),而只要从比x高的地方扔必然会碎。
对每组输入数据,你可以假定鸡蛋的硬度在0至n之间,即在n+1层扔鸡蛋一定会碎。

输出

对于每一组输入,输出一个整数,表示使用最优策略在最坏情况下所需要的扔鸡蛋次数。

样例输入

100 1
100 2

样例输出

100
14

提示

最优策略指在最坏情况下所需要的扔鸡蛋次数最少的策略。

如果只有一个鸡蛋,你只能从第一层开始扔,在最坏的情况下,鸡蛋的硬度是100,所以需要扔100次。如果采用其他策略,你可能无法测出鸡蛋的硬度(比如你第一次在第二层的地方扔,结果碎了,这时你不能确定硬度是0还是1),即在最坏情况下你需要扔无限次,所以第一组数据的答案是100。


分析:

下面是关于第二个数据的分析:

就拿14来算,因为是两个蛋,一个碎了还有一个可以扔。如果是14,第一次就扔15,如果碎了,就从扔第一层开始扔,扔到第13层如果碎了,就可以直接判断出是第14层,加起来就有14次。如果没碎,就还有13次机会,就从28层开始扔,碎了就是同样的分析方法,没碎就继续往下扔,这样就得出:第一次扔15楼,第二次28楼,第三次40楼,第四次51楼,第五次61楼,第六次70楼,第七次78楼,第八次85楼,第九次91楼,第十次96楼,第十一次就可以达到100楼,再加上96到100中间有3次,就是14次。如果不是14,用其他数据就不能刚好得出。

所以(以下为转载内容):f[i][j]表示从第i层,用j个蛋尝试,所用得的最小次数,f[i][j]并不代表一定在第i层去扔,可以在1~i中任意一层扔下一个蛋,因此搞一个循环变量k,k从1~i,对于一个当前的k,这个鸡蛋扔下去有两种情况:碎和不碎。如果碎了,那此时只有j-1个蛋,要尝试1~k-1层,即是f[k-1][j-1];如果不碎,还有j个蛋,那么就要考虑k+1~i层,这等效于f[i-k][j]。所以f[i][j]=min(f[i][j],max(f[k-1][j-1],f[j-k][j])+1)。

下面是代码(部分为转载内容):



版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

hdu2059 龟兔赛跑(动态规划经典例题)

龟兔赛跑 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Sub...

10.1动态规划例题:数字三角形

10.1 什么是动态规划 前面学过了用递归的方法解决问题。但是,单纯的递归,在解决某些问题的时候,效率 会很低。例如下面这道题目: 例题:数字三角形 问题描述 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 上图给出了一个数字三角形。从三角形的顶部到底部有很多条不同的路径。对于每条路 径,把路径上面的数加起来可以得到一个和,和最大的路径称为最佳路径。你的任务就是求 出最佳路径上的数字之

动态规划经典例题

关于动态规划的介绍很多,本文希望通过重复几个最经典的例题来理解动态规划。 问题1 求一个字符串中的最长的回文子串 回文是指正着读和倒着读,结果一样,比如abcba或abba。 分析: 令状态方...

10.5例题:动态规划典型题--最长公共子序列

问题描述 我们称序列 Z = &lt; z1, z2, ..., zk &gt;是序列 X = &lt; x1, x2, ..., xm &gt;的子序列当且仅当存在严格上 升的序列&lt; i1, i2, ..., ik &gt;,使得对 j = 1, 2, ... ,k, 有 xij = zj。比如 Z = &lt; a, b, f, c &gt;是 X = &lt; a, b, c, f, b, c &gt;的子序列。 现在给出两个序列 X和<br

HDOJ_杭电2084_数塔问题,经典阶段DP动态规划问题

简单的动态规划题目。 关键在于状态转移方程。 代码: /***** HDOJ_2084_数塔问题 ********/ /******** written by C_Shit_Hu ************/ ////////////////动态规划DP问题/////////////// /************************************************************
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)