鸡蛋的硬度(DP)

题目

原题链接


问题描述

鸡蛋硬度定义:如果一只母鸡的鸡蛋从高楼的第 a a a层摔下来没摔破,但是从 a + 1 a+1 a+1层摔下来时摔破了,那么就说这只母鸡的鸡蛋的硬度是 a a a

现给定楼层 n n n,硬度相同的 m m m个鸡蛋,问采取最优策略在最坏情况下需要的扔鸡蛋次数。
对每组输入数据,你可以假定鸡蛋的硬度在 0 0 0 n n n之间,即在 n + 1 n+1 n+1层扔鸡蛋一定会碎。
在这里插入图片描述


分析

我们以 d p [ i ] [ j ] dp[i][j] dp[i][j]表示硬度位于 [ 0 , i ] [0,i] [0,i] j j j个鸡蛋的情况下的最优解,我们看能不能把这个问题进行分解。

步骤一:确定状态
步骤二:确定状态转移方程
步骤三:确定边界情况和初始条件
步骤四:确定计算顺序

动态规划求解问题的基本条件:
1)无后效性: 动态规划要求已经求解的子问题不受后续阶段的影响,以保证对每一阶段的计算能够按顺序、不重复地执行。
2)最优子结构性质: 在动态规划算法求解问题的过程中,下一阶段的解应该能由前面各阶段子问题的最优解导出。

对于需要求解的 d p [ i ] [ j ] dp[i][j] dp[i][j],假设我们在楼层 k ( 1 ≤ k ≤ i ) k(1\leq k\leq i) k(1ki)扔下了一个鸡蛋,鸡蛋只有两种结局:摔碎OR没事。

如果鸡蛋碎了,说明鸡蛋的硬度在 [ 1 , k − 1 ] [1,k-1] [1,k1],此时鸡蛋的个数为 j − 1 j-1 j1那么我们接下来的问题就是需要求 d p [ k − 1 ] [ j − 1 ] dp[k-1][j-1] dp[k1][j1]
如果鸡蛋没碎,说明鸡蛋的硬度在 [ k , i ] [k,i] [k,i],鸡蛋个数为 j j j,这种情况其实等效于 d p [ i − k ] [ j ] dp[i-k][j] dp[ik][j],即将鸡蛋硬度视为 [ 0 , i − k ] [0,i-k] [0,ik].

由上面的分析我们可以看出这个问题满足DP的条件,下一步就是确定状态转移方程。

依然是在楼层 k k k扔了一个鸡蛋后,此时的 d p [ i ] [ j ] dp[i][j] dp[i][j]应该是什么值呢?
d p [ i ] [ j ] = m i n ( d p [ i ] [ j ] , 1 + m a x ( d p [ k − 1 ] [ j − 1 ] , d p [ i − k ] [ j ] ) ) dp[i][j]=min(dp[i][j],1+max(dp[k-1][j-1],dp[i-k][j])) dp[i][j]=min(dp[i][j],1+max(dp[k1][j1],dp[ik][j]))
内部嵌套的 m a x max max指的是取其中最坏的情况,它的实际意义就是指通过在 k k k层扔一次鸡蛋,问题得到简化,两个可能的子状态对应着两种情况,取子状态中的最大值作为最坏情况。
外部的 m i n min min指的是即便是在最坏情况下,我们仍然选择最小值作为我们的最优解。
当然了,这仅仅是在楼层 k k k扔下的讨论,我们需要讨论在 [ 1 , i ] [1,i] [1,i]每一层扔下的情况。

for(int k=1;k<=i;k++){
	dp[i][j]=min(dp[i][j],1+max(dp[k-1][j-1],dp[i-k][j]));
}

接下来我们的任务是确定边界条件和初始化,在上面的分解中最小的状态也就是 d p [ 1 ] [ j ] dp[1][j] dp[1][j] d p [ i ] [ 1 ] dp[i][1] dp[i][1]
d p [ 1 ] [ j ] dp[1][j] dp[1][j]:硬度为 [ 0 , 1 ] [0,1] [0,1] j j j个鸡蛋,那么 d p [ 1 ] [ j ] dp[1][j] dp[1][j]就等于1,一次就可确定;
d p [ i ] [ 1 ] dp[i][1] dp[i][1]:硬度为 [ 0 , i ] [0,i] [0,i] 1 1 1个鸡蛋,那么 d p [ i ] [ 1 ] dp[i][1] dp[i][1]就等于 i i i,自下往上,逐个尝试,最坏要 i i i次;
至于其余的 d p [ i ] [ j ] dp[i][j] dp[i][j],我们可以置为无穷大,递推中会对其逐个更新。

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll n,m;
ll dp[105][15];
int main(){
	for(int i=1;i<=100;i++)dp[i][1]=i;
	for(int i=1;i<=10;i++)dp[1][i]=1;
	for(int i=2;i<=100;i++){
		for(int j=2;j<=10;j++){
			dp[i][j]=INT_MAX;
		}
	}
	for(int i=2;i<=100;i++){
		for(int j=2;j<=10;j++){
			for(int k=1;k<=i;k++){
				dp[i][j]=min(dp[i][j],1+max(dp[k-1][j-1],dp[i-k][j]));
			}
		}
	}
	while(cin>>n>>m&&n&&m){
		cout<<dp[n][m]<<endl;
	}
}
  • 6
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值