二分 poj2002 Squares

这是一篇关于使用二分法解决POJ2002 Squares问题的博客。题目要求找出所有给定点构成的正方形数量。由于点的数量小于1000,故采用O(n^2 log n)复杂度的算法可行。关键在于通过二分搜索验证两点是否能构成正方形的边,并利用坐标旋转公式避免重复计算,确保枚举顺序正确。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

很有意义的一道二分题

题意:给出点,问有多少个正方形


因为n<1000,就提示了可以用O(n^2)级别的代码

很容易就想到枚举正方形的两个点,那么可以通过这两个点可以得到对应的另外两个点,那么如何验证这两个点是否存在呢

当然会想到二分。先将坐标读入后排序好,然后用二分查询是否存在就可以了

因为给了3秒,所以O(n^2logn)也是可以接受的


难点:正方形并不一定是平行坐标轴的,可能是斜的,所以如何用两个已知点求得另外两个点呢?

这里有个公式可以用来变换

    double x = tx * cos(w) - ty * sin(w);
    double y = tx * sin(w) + ty * cos(w);
可以得到点绕着圆心转w后的坐标


所以旋转后的坐标我们就能求出来了,假如枚举出的两个点分别是A,B

那么C点就是B围绕A旋转90度,D就是A围绕B旋转-90度

或者C点就是B围绕A旋转-90度,D就是A围绕B旋转90度

因为一条边可能对应两个方向不同的正方形嘛


那么怎么使枚举的时候不会重复计算正方形呢

假如枚举A是用下标i,那么枚举B的时候j要从i+1开始枚举

另外,在二分查找点的时候,应该在排序后的[j+1,n]的下标范围内二分查找,也就是查找B点后面的点,这样点的枚举就有次序了,就不会出现重复记数了


#include<cstdio>
#include<cmath>
#include<cstring>
#include<queue>
#include<vector>
#include<functional>
#include<algorithm>

using namespace std;
typedef long long LL;
typedef pair<int, int> PII;

const int MX = 1000 + 10;
const int INF = 0x3f3f3f3f;
const double exps = 1e-6;
const double pi = acos(-1.0);

struct Point {
    int x, y;
    Point() {}
    Point(int a, int b) {
        x = a;
        y = b;
    }
    bool operator<(const Point&b)const {
        if(x == b.x) return y < b.y;
        return x < b.x;
    }
} P[MX];

bool BS(Point p, int l, int r) {
    int L = l, R = r, m;
    while(L <= R) {
        m = (L + R) >> 1;
        if(P[m].x == p.x && P[m].y == p.y) return true;
        if(P[m] < p) L = m + 1;
        else       R = m - 1;
    }
    return false;
}

bool transXY(Point A, Point B, Point &C, int f) {
    int tx = B.x - A.x, ty = B.y - A.y;
    C.x = A.x - ty * f;
    C.y = A.y + tx * f;
}

int main() {
    //freopen("input.txt", "r", stdin);
    int n;
    while(~scanf("%d", &n), n) {
        for(int i = 1; i <= n; i++) {
            scanf("%d%d", &P[i].x, &P[i].y);
        }
        sort(P + 1, P + 1 + n);

        int ans = 0;
        for(int i = 1; i <= n - 3; i++) {
            for(int j = i + 1; j <= n - 2; j++) {
                Point C, D;

                transXY(P[i], P[j], C, 1);
                transXY(P[j], P[i], D, -1);
                if(BS(C, j + 1, n) && BS(D, j + 1, n)) {
                    ans++;
                }

                transXY(P[i], P[j], C, -1);
                transXY(P[j], P[i], D, 1);
                if(BS(C, j + 1, n) && BS(D, j + 1, n)) {
                    ans++;
                }
            }
        }
        printf("%d\n", ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值