POJ 2002 二分求解


题意:给出平面上n个点的坐标,求这些点所能组成的正方形的个数。
  思路:对n个点排序后,枚举对角线,计算出另外对角的坐标,二分查找它们是否在这n个点中,如果都在,则计数器增1。

  利用三角函数公式容易推出另外两点坐标。注意一个合法的正方形会被计数2次,故最终答案要除2。

-------------------------------------------------------------------------------------------------------------------------------------------------------------

以上为转载,自己懒得说了。

下面是代码:

#include <iostream>
#include <cmath>
#include <cstdio>
#include <algorithm>
using namespace std;

struct T { int x,y; };
int n;
T cor[1002];

bool find( double x, double y )
{
    int l = 0, r = n-1, mid;
    T t;
    while ( l <= r )    //注意一定要<=,<是不对的,找了很久......
    {
        mid = (l+r)/2;
        t = cor[mid];
        if ( t.x > x ) r = mid-1;
        else if ( t.x < x ) l = mid+1;
        else
        {
            if ( t.y > y ) r = mid-1;
            else if ( t.y < y ) l = mid+1;
            else return true;
        }
    }
    return false;
}

bool cmp( T a, T b )
{
    if ( a.x == b.x ) return a.y < b.y;
    else return a.x < b.x;
}

int main()
{
    int i, j, k, ans;
    double x0, y0, x1, y1;
    freopen( "ex.in", "r", stdin );
    while ( scanf("%d", &n) )
    {
        if ( n == 0 ) break;
        for ( i = 0; i < n; i++ )
            scanf( "%d%d", &cor[i].x, &cor[i].y );
        sort(cor,cor+n,cmp);
        ans = 0;
        for ( i = 0; i < n; i++ )
        for ( j = i+1; j < n; j++ )
        {
            x0 = (cor[i].x+cor[j].x-cor[j].y+cor[i].y)*0.5;
            y0 = (cor[i].y+cor[j].y-cor[i].x+cor[j].x)*0.5;
            x1 = (cor[i].x+cor[j].x-cor[i].y+cor[j].y)*0.5;
            y1 = (cor[i].y+cor[j].y-cor[j].x+cor[i].x)*0.5;
            if ( floor(x0)!=x0 || floor(x1)!=x1 ||  floor(y0)!=y0 || floor(y1)!=y1 ) continue;
            if ( find(x0,y0) && find(x1,y1) ) ans++;
        }
        printf( "%d\n", ans/2);
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值