基于模板匹配的字符识别(Matlab)

本文介绍了一种基于模板匹配的字符识别方法,包括模板匹配算法的详细过程及代码实现。通过实验验证了该方法的有效性,尽管存在相似字符识别挑战,整体识别率达到90%,并指出特征提取仍有优化空间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1  字符识别简介

字符识别是车牌识别中很重要的一部分,在模式识别中也扮演的很重要的角色。当然,我们可以用很多方法拉进行字符识别,比如:基于向量机(SVM),神经网络,小波等方法。当然基于模板匹配也是一种方法。模板匹配既简单有具有实效性。其中关键在于模板的选取。好的模板对字符识别的结果是决定性的。模板匹配的算法也是重要的。

2 模板匹配算法

       首先本文识别的前提是模板字符是二值图像,背景黑色,字符为白色;同样待识别的字符同样如此。
我们将预处理后的待识别字符图像imageU与字符模板库中的字符图像imageT进行”与“运算得到共同部分图像imageV;将得到的共同部分图像与待识别字符进行逻辑”异或“运算,得到待识别字符图像多余部分imageX;将得到的共同部分与模板字符进行逻辑”异或“运算,得到模板图像多余部分imageW。
      计算每个模板字符图像imageM中白像素个数T,待识别字符图像imageU的白像素个数U,imageU与imageT共同的部分imageV的白像素个数V,imageW的白像素个数W;imageX中白像素个数X;
构造判别函数表达式为:

其中TUV=(T+U+V)/3;
这样,相似系数最大max(Y)对应的模板M为待识别字符;


3  代码实现

由于需要模板库的支持,包含模板库和代码的所有内容可以下载:


%%%%%%%%%%%%%%%%%%%基于模板匹配的字符识别
templatePath='G:\licenseTemple\'; %路径因人而异
fileFormat='.bmp';
templateImage=zeros(40,20,36);
Timage=zeros(36,800);
for i=1:36 %读取模板
    stri=num2str(i-1);
    imagePath=[templatePath,stri,fileFormat];
    tempImage=imread(imagePath);
    templateImage(:,:,i)=tempImage;
    clear imagePath stri tempImage;
end
characterImage=zeros(40,20,6);
Uimage=zeros(6,800);
characterPath='G:\matlab--wavlet\'; %路径因人而异
charFileFormat='.jpg';
for i=1:6%读取待识别字符
    stri=num2str(i+1);
    imagePath=[characterPath,stri,charFileFormat];
    tempImage=imread(imagePath);  
    characterImage(:,:,i)=tempImage;
    clear imagePath stri tempImage;
end
%V=zeros(1,36);
%5X=zeros(1,36);
%5W=zeros(1,36);
%U=zeros(1,6);
%T=zeros(1,36);
Y=zeros(1,36);
for i=1:6
    U=length(find( characterImage(:,:,i))~=0);
    for j=1:36
        T=length(find( templateImage(:,:,j))~=0);
        tempV=characterImage(:,:,i)& templateImage(:,:,j);
        V=length(find(tempV)~=0);
        tempW=xor(tempV,templateImage(:,:,j));
        W=length(find(tempW)~=0);
        tempX=xor(tempV,characterImage(:,:,i));
        X=length(find(tempX)~=0);
        TUV=(T+U+V)/3;
        tempSum=sqrt(((T-TUV)*(T-TUV)+(U-TUV)*(U-TUV)+(V-TUV)*(V-TUV))/2);
        Y(j)=V/(W/T*X/U*tempSum);
    end
    [MAX,indexMax]=max(Y);
    stri=num2str(indexMax-1);
    imagePath=[templatePath,stri,fileFormat];
    image=imread(imagePath);
    figure(i);
    imshow(image);
    clear imagePath indexMax;
end

        
      
          
        
    




识别效果还不错。但是有些相近的字符,比如:B 8 不能很好的识别。
毕竟模板匹配是有缺陷的,整体识别率90%,特征提取还需要优化。
最后希望大家多多提意见。






### MATLAB 模板匹配字符识别示例代码 以下是基于模板匹配算法的英文印刷字符识别MATLAB 实现。此方法利用 `normxcorr2` 函数完成模板与目标图像之间的相关性计算,从而找到最佳匹配位置。 #### 主函数实现 以下为主程序部分,负责加载输入图像、调用模板匹配函数并显示结果: ```matlab function templateMatchingCharacterRecognition() % 加载待检测的图像 (灰度图) inputImage = imread('input_image.png'); grayInput = rgb2gray(inputImage); % 定义要匹配的目标字符模板列表 templates = createTemplates(); figure; subplot(1, 2, 1); imshow(grayInput); title('原始输入图像'); matchedResults = []; for i = 1:length(templates) template = templates{i}; % 使用 normxcorr2 进行模板匹配 correlationMap = normxcorr2(template, double(grayInput)); % 找到最大值的位置作为匹配点 [maxVal, maxIdx] = max(correlationMap(:)); [row, col] = ind2sub(size(correlationMap), maxIdx); % 调整坐标以适应原图像尺寸 bboxRow = row - size(template, 1)/2; bboxCol = col - size(template, 2)/2; % 存储匹配结果 matchedResults(i).template = template; matchedResults(i).position = [bboxRow, bboxCol]; matchedResults(i).score = maxVal; end % 显示最终匹配结果 subplot(1, 2, 2); imshow(grayInput); hold on; for i = 1:length(matchedResults) rectangle('Position', ... [matchedResults(i).position(2), matchedResults(i).position(1), ... size(matchedResults(i).template, 2), size(matchedResults(i).template, 1)], ... 'EdgeColor', 'r'); end title('模板匹配结果'); end ``` #### 创建模板函数 该函数定义一组用于匹配的字符模板。可以根据具体需求扩展更多字符模板。 ```matlab function templates = createTemplates() % 初始化模板数组 templates = {}; % 添加单个字符模板 (例如字母 A 的模板) charA = imread('char_A_template.png'); templates{end+1} = im2double(rgb2gray(charA)); % 可继续添加其他字符模板... % charB = imread('char_B_template.png'); % templates{end+1} = im2double(rgb2gray(charB)); end ``` 以上代码实现了基本的模板匹配流程,并能够标记出输入图像中与模板最相似的部分[^1]。需要注意的是,在实际应用中可能还需要对输入图像进行预处理操作(如二值化、去噪等),以便提高匹配精度[^2]。 --- ###
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值