# 数据结构哈夫曼树

#include <stdio.h>
#include<stdlib.h>
#include"stdafx.h"
#define MAXBIT      100
#define MAXVALUE  10000
#define MAXLEAF     30
#define MAXNODE    MAXLEAF*2 -1

typedef struct
{
int bit[MAXBIT];
int start;
} HCodeType;        /* 编码结构体 */
typedef struct
{
int weight;
int parent;
int lchild;
int rchild;
int value;
} HNodeType;        /* 结点结构体 */

/* 构造一颗哈夫曼树 */
void HuffmanTree(HNodeType HuffNode[MAXNODE], int n)
{
/* i、j： 循环变量，m1、m2：构造哈夫曼树不同过程中两个最小权值结点的权值，
x1、x2：构造哈夫曼树不同过程中两个最小权值结点在数组中的序号。*/
int i, j, m1, m2, x1, x2;
/* 初始化存放哈夫曼树数组 HuffNode[] 中的结点 */
for (i = 0; i<2 * n - 1; i++)
{
HuffNode[i].weight = 0;//权值
HuffNode[i].parent = -1;
HuffNode[i].lchild = -1;
HuffNode[i].rchild = -1;
HuffNode[i].value = i; //实际值，可根据情况替换为字母
} /* end for */

/* 输入 n 个叶子结点的权值 */
for (i = 0; i<n; i++)
{
printf("Please input weight of leaf node %d: \n", i);
scanf("%d", &HuffNode[i].weight);
} /* end for */

/* 循环构造 Huffman 树 */
for (i = 0; i<n - 1; i++)
{
m1 = m2 = MAXVALUE;     /* m1、m2中存放两个无父结点且结点权值最小的两个结点 */
x1 = x2 = 0;
/* 找出所有结点中权值最小、无父结点的两个结点，并合并之为一颗二叉树 */
for (j = 0; j<n + i; j++)
{
if (HuffNode[j].weight < m1 && HuffNode[j].parent == -1)
{
m2 = m1;
x2 = x1;
m1 = HuffNode[j].weight;
x1 = j;
}
else if (HuffNode[j].weight < m2 && HuffNode[j].parent == -1)
{
m2 = HuffNode[j].weight;
x2 = j;
}
} /* end for */
/* 设置找到的两个子结点 x1、x2 的父结点信息 */
HuffNode[x1].parent = n + i;
HuffNode[x2].parent = n + i;
HuffNode[n + i].weight = HuffNode[x1].weight + HuffNode[x2].weight;
HuffNode[n + i].lchild = x1;
HuffNode[n + i].rchild = x2;

printf("x1.weight and x2.weight in round %d: %d, %d\n", i + 1, HuffNode[x1].weight, HuffNode[x2].weight);  /* 用于测试 */
printf("\n");
} /* end for */
/*  for(i=0;i<n+2;i++)
{
printf(" Parents:%d,lchild:%d,rchild:%d,value:%d,weight:%d\n",HuffNode[i].parent,HuffNode[i].lchild,HuffNode[i].rchild,HuffNode[i].value,HuffNode[i].weight);
}*///测试
} /* end HuffmanTree */

//解码
void decodeing(char string[], HNodeType Buf[], int Num)
{
int i, tmp = 0, code[1024];
int m = 2 * Num - 1;
char *nump;
char num[1024];
for (i = 0; i<strlen(string); i++)
{
if (string[i] == '0')
num[i] = 0;
else
num[i] = 1;
}
i = 0;
nump = &num[0];

while (nump<(&num[strlen(string)]))
{
tmp = m - 1;
while ((Buf[tmp].lchild != -1) && (Buf[tmp].rchild != -1))
{

if (*nump == 0)
{
tmp = Buf[tmp].lchild;
}
else tmp = Buf[tmp].rchild;
nump++;

}

printf("%d", Buf[tmp].value);
}

}

int main(void)
{

HNodeType HuffNode[MAXNODE];            /* 定义一个结点结构体数组 */
HCodeType HuffCode[MAXLEAF], cd;       /* 定义一个编码结构体数组， 同时定义一个临时变量来存放求解编码时的信息 */
int i, j, c, p, n;
char pp[100];
scanf("%d", &n);
HuffmanTree(HuffNode, n);

for (i = 0; i < n; i++)
{
cd.start = n - 1;
c = i;
p = HuffNode[c].parent;
while (p != -1)   /* 父结点存在 */
{
if (HuffNode[p].lchild == c)
cd.bit[cd.start] = 0;
else
cd.bit[cd.start] = 1;
cd.start--;        /* 求编码的低一位 */
c = p;
p = HuffNode[c].parent;    /* 设置下一循环条件 */
} /* end while */

/* 保存求出的每个叶结点的哈夫曼编码和编码的起始位 */
for (j = cd.start + 1; j<n; j++)
{
HuffCode[i].bit[j] = cd.bit[j];
}
HuffCode[i].start = cd.start;
} /* end for */

/* 输出已保存好的所有存在编码的哈夫曼编码 */
for (i = 0; i<n; i++)
{
printf("%d 's Huffman code is: ", i);
for (j = HuffCode[i].start + 1; j < n; j++)
{
printf("%d", HuffCode[i].bit[j]);
}
printf(" start:%d", HuffCode[i].start);

printf("\n");

}
/*    for(i=0;i<n;i++){
for(j=0;j<n;j++)
{
printf ("%d", HuffCode[i].bit[j]);
}
printf("\n");
}*/
scanf("%s", &pp);
decodeing(pp, HuffNode, n);
getch();
return 0;
}

• 本文已收录于以下专栏：

## 哈夫曼树的构造以及编码实现

• u012532559
• 2015年03月24日 12:35
• 10488

## 数据结构(15)--哈夫曼树以及哈夫曼编码的实现

1.哈夫曼树     假设有n个权值{w1, w2, ..., wn}，试构造一棵含有n个叶子结点的二叉树，每个叶子节点带权威wi，则其中带权路径长度WPL最小的二叉树叫做最优二叉树或者哈夫曼树。  ...
• u010366748
• 2016年03月01日 17:28
• 6256

## 数据结构树--哈夫曼树

• gaoxin1076
• 2012年12月02日 21:38
• 5186

## 数据结构之---C语言实现哈夫曼树和编码

• u012965373
• 2015年07月03日 00:03
• 6062

## 数据结构::如何实现哈夫曼树

【哈夫曼树的定义】：     哈夫曼树又称为最优二叉树，它是加权路径最短的二叉树。     不同于普通的二叉树，它的每个节点都有相应的权值，当我们构建的时候最终离根节点远的节点权重小，反之就比较大。...
• lalu58
• 2017年01月01日 20:13
• 1637

## 哈夫曼树的构造

• qq_33990383
• 2016年11月07日 22:43
• 4076

## 数据结构-哈夫曼树的实现

• 2017年11月16日 10:26
• 179KB
• 下载

## 【数据结构】哈夫曼树

1、背景知识 1、路径和路径长度 在一棵树中，从一个结点往下可以达到的孩子或孙子结点之间的通路，称为路径。通路中分支的数目称为路径长度。若规定根结点的层数为1，则从根结点到第L层结点的路径长度...
• shujh_sysu
• 2016年08月10日 19:09
• 846

## 数据结构之哈夫曼树

• chenweicheer
• 2016年10月15日 15:17
• 3471

## 数据结构例程——哈夫曼树

• sxhelijian
• 2015年10月20日 05:48
• 2558

举报原因： 您举报文章：数据结构哈夫曼树 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)