从WordCount看Spark大数据处理的核心机制(2)

转载 2015年07月07日 17:29:12

本文转自http://mp.weixin.qq.com/s?__biz=MzA5MTcxOTk5Mg==&mid=208059053&idx=3&sn=1157ab5db7bc2783e812e3dc14a0b92e&scene=18#rd,所有权力归原作者所有。

在上一篇文章中,我们讲了Spark大数据处理的可扩展性和负载均衡,今天要讲的是更为重点的容错处理,这涉及到Spark的应用场景和RDD的设计来源。

Spark的应用场景

Spark主要针对两种场景:

  • 机器学习,数据挖掘,图应用中常用的迭代算法(每一次迭代对数据执行相似的函数)

  • 交互式数据挖掘工具(用户反复查询一个数据子集)

Spark在spark-submit外,还提供了spark-shell,它就是专门用来做交互数据挖掘的工具

MapReduce等框架并不明确支持迭代中间结果/数据子集的共享,所以需要将数据输出到磁盘,然后在每次查询时重新加载,这带来较大的开销。

既然反复写磁盘和从磁盘加载数据使得性能下降,那就把数据放到内存中,这就是Spark基于内存的弹性分布式数据集(RDD)的出发点。

自动容错

MapReduce是容错性非常好的系统。处理一步就放到磁盘,再处理一步又放到磁盘,一旦哪一步有问题,重做就好了,真可谓是一步一个脚印。Spark为了上述场景下的性能,把数据放在内存中,那整个系统的容错就成了最困难的地方。

一般来说,分布式数据集的容错性有两种方式:即数据检查点和记录数据的更新。由于面向的是大规模数据分析,数据检查点操作成本很高:需要通过数据中心的网络连接在机器之间复制庞大的数据集,而网络带宽往往比内存带宽低得多,同时还需要消耗更多的存储资源(在内存中复制数据可以减少需要缓存的数据量,而存储到磁盘则会拖慢应用程序)。所以选择记录更新的方式。但是,如果更新太多,那么记录更新成本也不低。因此,RDD只支持读操作,并且只支持粗粒度转换,即在大量记录上执行的单个操作。将创建RDD的一系列转换记录下来(即Lineage),以便恢复丢失的分区。

虽然只支持粗粒度转换限制了编程模型,但是RDD仍然可以很好地适用于很多应用,特别是支持数据并行的批量分析应用,包括数据挖掘、机器学习、图算法等,因为这些程序通常都会在很多记录上执行相同的操作。

RDD抽象

RDD是只读的、分区记录的集合。RDD只能基于在稳定物理存储中的数据集和其他已有的RDD上执行确定性操作来创建。这些确定性操作称之为转换,如map、filter、groupBy、join(转换不是程开发人员在RDD上执行的操作)。

RDD含有如何从其他RDD计算出本RDD的相关信息(即Lineage),据此可以从物理存储的数据计算出相应的RDD分区。

在需要反复使用的某个数据集时,使用RDD的持久化,即persist,这个持久化优先是放在内存中的。

再来看看WordCount

说了这么多,我们依然拿WordCount来说说,帮忙小伙伴们理解,还没有看本系列前两篇文章的童鞋抓紧去看看哈。

val file = "hdfs://127.0.0.1:9000/file.txt"
val lines = sc.textFile(file)
val words = lines.flatMap(line => line.split("\\s+"))
val partialCountMap = words
.mapPartitions(convertWordsInPartitionToWordCountMap)
val wordCount = distCountMap.reduce(mergeMaps)

WordCount一共涉及到三个RDD,用于承载文本行的lines,用于承载单词的words,用于承载每个文件块上部分单词计数的partialCountMap。Lineage关系:partialCountMap的父RDD为words,words的父RDD为lines,如下图:

有了Lineage和RDD的只读特性,就可以轻松完成容错了。

如果words在slave1上的一个分区出问题了,那么我们只需要加载slave1上对应的文件块,并重新计算其lines对应的分区,进而计算得到words的这个分区。

图中每个slave中只画了一个文件块,实际上可能有多个文件块。一定要注意的是哪个分区出问题了,只会重算这一个分区,也就只会重新加载这个分区关联的文件块。

上面讨论的是窄依赖的情况,如果像groupBy这种转换,一个RDD分区需要依赖父RDD的多个分区,那么一个分区挂了,就需要计算父RDD中的多个分区。

分布式系统的三个问题:可扩展性,负载均衡,容错处理,都解决了吧。

不知道看到这里的小伙伴,心里是否有个疑问,既然RDD的API只支持粗粒度的转换,它真的能够支持这么多千奇百怪的应用场景吗?下一篇,我们一起看RDD的API,以及它对其它大数据处理框架能够处理的应用场景的等效解决方案。


相关文章推荐

浅析快速排序

浅析快速排序 By 钟桓  9月 16 2014 更新日期:9月 16 2014 文章目录 1. 基本思想与特性2. 步骤与代码实现3. 算法分析 3.1. (1)最坏时间复杂度...

第七章:在Spark集群上使用文件中的数据加载成为graph并进行操作(3)

你可以调整graph的构造参数来指定partition的数量。 当数据加载完毕的时候整个web-Googel.txt就缓存进了内存之中,如下所示:   可以看到数据被缓存成了ed...

从WordCount看Spark大数据处理的核心机制(1)

本文转自http://mp.weixin.qq.com/s?__biz=MzA5MTcxOTk5Mg==&mid=208059053&idx=2&sn=fc3a8d88663038ce7c6b1274...

【Spark大数据处理】动手写WordCount

本文转自http://mp.weixin.qq.com/s?__biz=MzA5MTcxOTk5Mg==&mid=207906066&idx=1&sn=f9cc48a55343684c69165254...

Spark大数据处理技术

  • 2017年11月08日 22:44
  • 48.66MB
  • 下载

大数据处理过程之核心技术ETL详解

ETL (数据转换)就是对数据的合并、清理和整合。通过转换,可以实现不同的源数据在语义上的一致性。抛开大数据的概念与基本知识,进入核心。我们从:数据采集、数据存储、数据管理、数据分析与挖掘,四个方面讨...

spark 大数据处理技术

  • 2017年11月16日 12:17
  • 5.93MB
  • 下载

Spark大数据处理技术 带标签 完整版

  • 2017年11月12日 11:23
  • 37.58MB
  • 下载

为大数据处理点亮一盏明灯----Spark知识系统化整理分享

Apache Spark项目于2009年诞生于伯克利大学的AMPLab实验室,当初的目的在于将内存内分析机制引入大规模数据集当中。在那个时候,Hadoop MapReduce的关注重点仍然放在那些本质...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:从WordCount看Spark大数据处理的核心机制(2)
举报原因:
原因补充:

(最多只允许输入30个字)