python random模块

转载 2016年06月02日 08:46:39

 Python中的random模块用于生成随机数。下面介绍一下random模块中最常用的几个函数。

random.random

random.random()用于生成一个0到1的随机符点数: 0 <= n < 1.0

random.uniform

  random.uniform的函数原型为:random.uniform(a, b),用于生成一个指定范围内的随机符点数,两个参数其中一个是上限,一个是下限。如果a > b,则生成的随机数n: a <= n <= b。如果 a <b, 则 b <= n <= a。

  1. print random.uniform(10,20)  
  2. print random.uniform(20,10)  
  3. #---- 结果(不同机器上的结果不一样)  
  4. #18.7356606526  
  5. #12.5798298022  

random.randint

  random.randint()的函数原型为:random.randint(a, b),用于生成一个指定范围内的整数。其中参数a是下限,参数b是上限,生成的随机数n: a <= n <= b

  1. print random.randint(12,20)  #生成的随机数n: 12 <= n <= 20  
  2. print random.randint(20,20)  #结果永远是20  
  3. #print random.randint(20, 10)   #该语句是错误的。下限必须小于上限。  

random.randrange

  random.randrange的函数原型为:random.randrange([start], stop[, step]),从指定范围内,按指定基数递增的集合中 获取一个随机数。如:random.randrange(10, 100, 2),结果相当于从[10, 12, 14, 16, ... 96, 98]序列中获取一个随机数。random.randrange(10, 100, 2)在结果上与 random.choice(range(10, 100, 2) 等效。

random.choice

  random.choice从序列中获取一个随机元素。其函数原型为:random.choice(sequence)。参数sequence表示一个有序类型。这里要说明 一下:sequence在python不是一种特定的类型,而是泛指一系列的类型。list, tuple, 字符串都属于sequence。有关sequence可以查看python手册数据模型这一章,也可以参考:http://www.17xie.com/read-37422.html 。下面是使用choice的一些例子:

  1. print random.choice("学习Python")   
  2. print random.choice(["JGood","is""a","handsome""boy"])  
  3. print random.choice(("Tuple","List""Dict"))  

random.shuffle

  random.shuffle的函数原型为:random.shuffle(x[, random]),用于将一个列表中的元素打乱。如:

  1. p = ["Python","is""powerful","simple""and so on..."]  
  2. random.shuffle(p)  
  3. print p  
  4. #---- 结果(不同机器上的结果可能不一样。)  
  5. #['powerful', 'simple', 'is', 'Python', 'and so on...']  

random.sample

  random.sample的函数原型为:random.sample(sequence, k),从指定序列中随机获取指定长度的片断。sample函数不会修改原有序列。

  1. list = [12345678910]  
  2. slice = random.sample(list, 5)  #从list中随机获取5个元素,作为一个片断返回  
  3. print slice  
  4. print list #原有序列并没有改变。  

  上面这些方法是random模块中最常用的,在Python手册中,还介绍其他的方法。感兴趣的朋友可以通过查询Python手册了解更详细的信息。


例子:

[python] view plain copy
 print?
  1. import random  
  2. result = random.random()  
  3. print result   #生成0-1的随机数  
  4.   
  5. print random.uniform(10,12)  #10-12的随机数  
  6.   
  7. print random.randint(30,50)  #30-50的随机整数   
  8.   
  9. print random.randrange(10,100,2#从10开始到100结束,步长为2的序列中,随机选一个  
  10.   
  11. list = [1,2,5,6,7,8,8]  
  12. print random.choice(list)   #从序列中随机选一个  
  13.   
  14.   
  15.   
  16. random.shuffle(list)     #重新排列序列  
  17. print list  
  18.   
  19. list = [12345678910]     
  20. slice = random.sample(list, 5)   #从序列中取样  
  21. print slice     
结果:

0.782366976492
11.5582702631
42
88
7
[1, 5, 8, 6, 7, 2, 8]
[10, 2, 9, 7, 8]

本文转自http://blog.csdn.net/xiaocaiju/article/details/6973175,所有权力归原作者所有。

举报

相关文章推荐

python random模块

Python中的random模块用于生成随机数。下面介绍一下random模块中最常用的几个函数。 random.random random.random()用于生成一个0到1的随机符点数: 0 r...

Python random模块

random是用于生成随机数的,我们可以利用它随机生成数字或者选择字符串。 random.random()    用于生成一个随机浮点数:range[0.0,1.0) ...

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

Python random模块

random是用于生成随机数的,我们可以利用它随机生成数字或者选择字符串。 random.random()    用于生成一个随机浮点数:range[0.0,1.0) ...

Python random模块

random模块的作用:实现了多种类型的伪随机生成器。 1 random.random() 返回一个随机的浮点数值:range[0.0,1.0) import random for i in ...

Python random模块

random是用于生成随机数的,我们可以利用它随机生成数字或者选择字符串。 random.random()    用于生成一个随机浮点数:range[0.0,1.0) ...

Python Random模块

有的时候我们需要在写程序的时候用到随机数生成,在python中有内置模块random可以帮助我们,此外科学计算包numpy中也有random模块实现这一功能。今天,我们介绍一下python内置rand...

python random模块

Python中的random模块用于生成随机数。下面介绍一下random模块中最常用的几个函数。 random.random random.random()用于生成一个0到1的随机符点数: 0 ...

python random模块

Python中的random模块用于生成随机数。下面介绍一下random模块中最常用的几个函数。 random.random random.random()用于生成一个0到1的随机符点数: 0 ra...

python random模块

import random print(random.random()) print(random.randint(1,10)) print(random.uniform(10,20))  p...

python random模块

Python中的random模块用于生成随机数。下面介绍一下random模块中最常用的几个函数。 random.random random.random()用于生成一个0到1的随机符点数: 0 ...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)