poj 1639 Picnic Planning 单度限制的最小生成树

原创 2014年11月23日 10:25:40

题意:

给一个无向图连通图,求它的最小生成树,生成树满足条件点v0的度小于等于limit。

分析:

一般有度限制的最小生成树问题是np完全的,但单点度限制就比较简单了,先在原图上求不含v0的最小生成森林,然后再将森林中每一棵树选一条最短的边连到v0上,设最小生成森林中有k0棵树,如果k0>limit自然无解,否则每次再选增量最小的边连到v0上,同时删除因为加边形成环上的最大边。

代码:

//poj 1639
//sepNINE
#include <iostream>
#include <string>
#include <map>
#include <algorithm>
using namespace std;
const int maxN=32;
const int maxM=1024;
map<string,int> name;
int e,parkE,park,n;
int vis[maxN];
int f[maxN],used[maxM],usedParkE[maxM];
int g[maxN][maxN],parent[maxN];
struct Edge
{
	int u,v,w;
}edge[maxM],parkEdge[maxM];
int cmp(Edge a,Edge b)
{
	return a.w<b.w;	
}
int find(int u)
{
	return f[u]==u?u:f[u]=find(f[u]);
}

void dfs(int u)
{
	for(int i=1;i<=n;++i)
		if(g[u][i]>0&&parent[i]==0){
			parent[i]=u;
			dfs(i);
		}
}

void updateTree()
{
	memset(parent,0,sizeof(parent));
	parent[park]=-1;
	dfs(park);
}
int findmax(int v)
{
	int maxx=-1,x;
	while(v!=park){
		if(maxx<g[v][parent[v]]){
			maxx=g[v][parent[v]];
			x=v;
		}
		v=parent[v];
	}
	return x;
}
int main()
{
	int i,m,limit;
	n=0;
	e=parkE=0;
	park=-1; 
	cin>>m;
	while(m--){
		string a,b;
		int w;
		cin>>a>>b>>w;
		if(name[a]==0) name[a]=++n;
		if(name[b]==0) name[b]=++n;
		if(a=="Park") park=name[a];
		if(b=="Park") park=name[b];
		int u=name[a],v=name[b];
		if(park==u||park==v){
			parkEdge[parkE].u=u;
			parkEdge[parkE].v=v;
			parkEdge[parkE].w=w;
			++parkE;	
		}	
		else{
			edge[e].u=u;edge[e].v=v;edge[e].w=w;
			++e;
		}
	}
	cin>>limit;
	sort(edge,edge+e,cmp);
	for(i=1;i<=n;++i) f[i]=i;
	int sum=0;
	memset(used,0,sizeof(used));
	memset(g,0,sizeof(g));
	for(i=0;i<e;++i){
		int u=edge[i].u,v=edge[i].v;
		int pa=find(u);
		int pb=find(v);
		if(pa==pb)
			continue;
		used[i]=1;
		g[u][v]=g[v][u]=edge[i].w;
		f[pa]=pb;
		sum+=edge[i].w; 
	}
	memset(vis,0,sizeof(vis));
	sort(parkEdge,parkEdge+parkE,cmp);
	memset(usedParkE,0,sizeof(usedParkE));
	int cnt=0;
	for(i=0;i<parkE;++i){
		int u=parkEdge[i].u;
		int v=parkEdge[i].v;
		int w=parkEdge[i].w;
		if(u!=park) swap(u,v);
		if(vis[find(v)]==0){
			++cnt;
			vis[find(v)]=1;
			usedParkE[i]=1;
			sum+=w;
			g[u][v]=g[v][u]=w;
		}		
	}
	updateTree();
	while(cnt<limit){
		int deta=0,minI;
		for(i=0;i<parkE;++i){
			if(usedParkE[i]==1)
				continue;
			int u=parkEdge[i].u,v=parkEdge[i].v,w=parkEdge[i].w;
			if(u!=park) swap(u,v);
			int changeP=findmax(v);
			int pFather=parent[changeP];
			if(pFather==park)
				continue;
			int t=w-g[changeP][pFather];
			if(t<deta){
				deta=t;
				minI=i;	
			}	
		}
		if(deta==0)
			break;
		else{
			int u=parkEdge[minI].u;
			int v=parkEdge[minI].v;
			int w=parkEdge[minI].w;
			if(u!=park) swap(u,v);
			int changeP=findmax(v);
			int pFather=parent[changeP];
			g[changeP][pFather]=g[pFather][changeP]=0;
			g[u][v]=g[v][u]=w;
			updateTree();
			usedParkE[minI]=1;
			sum+=deta;
			++cnt;
		} 
	}
	printf("Total miles driven: %d",sum);	
	return 0;	
} 


相关文章推荐

【POJ】1639 Picnic Planning 度限制最小生成树

Picnic Planning Time Limit: 5000MS Memory Limit: 10000K Total Submissions: 9137 ...

POJ 1639 Picnic Planning (k度限制最小生成树)

题目类型  次小生成树 题目意思 给出 n 个点 m 条边问最小生成树是否唯一 (n 解题方法 先用kruscal算法求出最小生成树和构成最小生成树的边 ...

POJ 1639:Picnic Planning(最小度限制生成树)

Picnic Planning Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 7356  ...
  • wugj03
  • wugj03
  • 2012年04月18日 12:34
  • 796

POJ1639 Picnic Planning(度限制生成树)

黑书上的例题,所以题意就不啰嗦了,具体模型是求一个无向图的最小生成树,其中有一个点的度有限制(假设为 k)。 要求最小 k 度生成树,我们可以按照下面的步骤来做: 设有度限制的点为 V0 ...

poj 1639 Picnic Planning 最小K度限制生成树

Picnic PlanningTime Limit: 5000MS Memory Limit: 10000KTotal Submissions: 5846 Accepted: 1934Descript...

POJ--1639[Picnic Planning] K限度最小生成树

算法流程:1.将该点(以下用v0表示)从图中删除,将得到m个连通分量。2.对每个连通分量求最小生成树,假设m个。3.从每个连通分量中找与v0关联的权值最小的边,与v0相连接,这样将得到v0的最小m度生...

poj1639 Picnic Planning 最小度数限制生成树

题意:若干个人开车要去park聚会,但是park能停的车是有限的,为k。所以这些人要通过先开车到其他人家中,停车,然后拼车去聚会。另外,车的容量是无限的,他们家停车位也是无限的。求开车总行程最短。 ...

POJ 1639 Picnic Planning(K度限生成树+map建图)

思路:基本是一道度限生成图的模板题、建图的时候用了MAP、最后是暴力枚举所有可能、...

[POJ 1639] 单度限制最小生成树

POJ 1639 Picnic Planning 单度限制最小生成树
  • SIOFive
  • SIOFive
  • 2014年04月10日 01:05
  • 916

POJ 1639 度限制最小生成树Prim

题意:给出n条无向带权边,求所有点的最小生成树,其中“Park”的度数不超过最后输入的k,输入保证有解。 思路:思路其实很好理解,分为几个步骤: 1.当然将“Park”作为根节点,一开始先删掉它,则原...
  • dy0607
  • dy0607
  • 2016年10月12日 00:17
  • 215
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj 1639 Picnic Planning 单度限制的最小生成树
举报原因:
原因补充:

(最多只允许输入30个字)