poj 2780 Linearity 最多共线点经典问题

题意:

给n个点,其中最多有多少点共线(n<1000)。

分析:

这是一个经典问题,朴素n^3解法:枚举n^2条直线,判断每条直线与多少点相交,复杂度n^3。明显会超时。这是n^2logn的解法:枚举每个点,对某个点与其他点连的n条直线按斜率排序,设这些直线中斜率相同的直线有k条,则k更新答案。这里想着重说一下斜率的问题,网上很多代码都是直接算斜率的,但计算几何的题目不推荐用斜率,最好用叉积代替有关斜率的一切计算,因为1)斜率的取值范围非常大,如果有中间计算有乘法很容易爆数据表示范围,对于要求精度的题会捉急。2)如果你定义INF=100000000代表无穷大的斜率,那么如果题目中有条直线的斜率为INF+1怎么办?3)计算斜率涉及除法,处处要特判分母,导致程序不简洁还容易出错4)叉积和点积是对点线关系比斜率深刻得多的描述,能表示点线之间的前后关系,顺逆关系等,有时候将点线平移还能在叉积点积运算上构成偏序集(这道题代码中对线段的逆向就是为了构成偏序集),而偏序集又可以多出很多手段来处理了。所以建议计算几何中少考虑斜率,多从点积叉积开始入手。

代码:

//poj 2780
//sep9
#include <iostream>
#include <algorithm> 
#include <cmath>
using namespace std;
const int maxN=1024;
const int maxM=500024;
struct POINT
{
	int x,y;
}p[maxN];
struct LINE
{
	int x,y;	
}l[maxM];

int cmp(LINE a,LINE b)
{
	 return a.x*b.y-a.y*b.x>=0;		
}

int main()
{
	int n;
	while(scanf("%d",&n)==1){
		int num_line,ans=-1;
		for(int i=0;i<n;++i)
			scanf("%d%d",&p[i].x,&p[i].y);		
		for(int i=0;i<n;++i){
			num_line=0;
			for(int j=i+1;j<n;++j){
				int dx=p[i].x-p[j].x,dy=p[i].y-p[j].y;
				if(dy<0) dy=-dy,dx=-dx; 
				else if(dy==0&&dx<0)
					dx=-dx;
				l[num_line].x=dx,l[num_line].y=dy;
				++num_line;
			}
			sort(l,l+num_line,cmp);
			int cnt=0;
			for(int k=0;k<num_line;++k)
				if(k==0||l[k-1].x*l[k].y==l[k-1].y*l[k].x)
					++cnt;
				else{
					ans=max(ans,cnt);
					cnt=1;
				}
			ans=max(ans,cnt);		
		}
		printf("%d\n",ans+1);
	}
	return 0;	
} 


  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
以下是Java解决POJ3233—矩阵幂序列问题的代码和解释: ```java import java.util.Scanner; public class Main { static int n, k, m; static int[][] A, E; public static void main(String[] args) { Scanner sc = new Scanner(System.in); n = sc.nextInt(); k = sc.nextInt(); m = sc.nextInt(); A = new int[n][n]; E = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { A[i][j] = sc.nextInt() % m; E[i][j] = (i == j) ? 1 : 0; } } int[][] res = matrixPow(A, k); int[][] ans = matrixAdd(res, E); printMatrix(ans); } // 矩阵乘法 public static int[][] matrixMul(int[][] a, int[][] b) { int[][] c = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) { c[i][j] = (c[i][j] + a[i][k] * b[k][j]) % m; } } } return c; } // 矩阵快速幂 public static int[][] matrixPow(int[][] a, int b) { int[][] res = E; while (b > 0) { if ((b & 1) == 1) { res = matrixMul(res, a); } a = matrixMul(a, a); b >>= 1; } return res; } // 矩阵加法 public static int[][] matrixAdd(int[][] a, int[][] b) { int[][] c = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { c[i][j] = (a[i][j] + b[i][j]) % m; } } return c; } // 输出矩阵 public static void printMatrix(int[][] a) { for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { System.out.print(a[i][j] + " "); } System.out.println(); } } } ``` 解释: 1. 首先读入输入的n、k、m和矩阵A,同时初始化单位矩阵E。 2. 然后调用matrixPow函数求出A的k次幂矩阵res。 3. 最后将res和E相加得到结果ans,并输出。 4. matrixMul函数实现矩阵乘法,matrixPow函数实现矩阵快速幂,matrixAdd函数实现矩阵加法,printMatrix函数实现输出矩阵。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值