期末学习总结



         数据结构课程已经接近尾声,现在回想起来,这一学期走过的路程还真是有趣而又艰辛,更是这样的体会,才让我获益良多。

其实,在还没有正式上数据结构课的时候我就早已在141145同学的口中知道了贺老师的名字。每次听同学提起贺老师好像是又爱又恨(应该可以这样形容吧)的样子:贺老师好,对每个同学都极有耐心,让人不自觉地想去亲近和倾听;贺老师不好,总是在解决了问题长舒一口气的时候提出更高的要求,让人不得不继续埋头苦干。每次听到同学们这样议论,我就默默的说,有个这样的负责任老师真好。

后来,在知道大二要学习数据结构的时候其实我是拒绝的,因为我觉得它好难,然而现在也没觉得它特别简单。但是,我特别想提到的就是贺老师使用的翻转课堂,觉得它就是个神奇的存在!!!!暑假的时候老师就让我们使用了蓝墨云班课,当时我还在想,这老师好洋气呀,但是,这样的教学方式能让我学会数据结构吗?

刚刚开学的前几个周,我还是很抵触的,觉得太麻烦了,又要提前预习,还得上机发博文做习题,占据了我很多空闲的时间。可是渐渐的习惯了之后,我发现贺老师的翻转课堂真的是超级赞。课前没事的时候打开手机就可以看到老师的视频,时间短一段一段的看就算零碎时间都可以预习,也不用天天坐在教室里看书,更更更更重要的是看一遍看不懂可以看两遍甚至很多遍,很适合我。(*-*)更有重点理解的知识,老师上课就会再讲一遍,又可以再学习一遍。而CSDN呢,也是个好帮手,现在学期末了,翻开博客看着自己的成果,心里也是高兴的。

在整个学期中,还是有很多值得反思的地方。学习是一个逐渐积累的过程,但是,我在积累的过程中偷懒了。学期中的时候渐渐浮躁,其他事情有些多就占据了很多学习的时间,总是在周末晚上才突然意识到这周的视频还没看,然后一头雾水的走进了贺老师的课堂,再然后就云里雾里不知所云再然后就成了默默玩手机了,对此,我深深深深表遗憾。

马上就到了期末考试的了,这时候就更加体现出翻转课堂的好处了,我要利用视频和习题好好弥补以前对知识的亏欠,争取在复习期间提升自己。



Ps:感觉自己说了一堆废话,但是都是想说的话·······




### Halcon 学期末课程总结报告 Halcon 是一款功能强大的机器视觉软件,广泛应用于工业自动化、质量检测和图像处理等领域。以下是对 Halcon 课程的全面总结,涵盖核心知识点、实际应用以及开发技巧。 #### ### Halcon 核心功能概述 Halcon 提供了丰富的图像处理功能,包括但不限于图像读取与显示、特征提取、模式匹配、测量工具等[^1]。这些功能通过 Halcon 的 HDevelop 环境实现,支持用户快速开发和测试算法。 ```python # 示例代码:使用 Halcon 进行图像读取与边缘检测 from halcon import * # 创建窗口并打开 dev_close_window() dev_open_window(0, 0, 512, 512, 'black', ['visible'], ['value'], WindowHandle) # 读取图像 read_image(Image, 'monkey') # 显示原始图像 disp_image(Image, WindowHandle) # 边缘检测 sobel_amp(Image, SobelImage, 'sum_abs', 3) threshold(SobelImage, RegionEdge, 100, 255) disp_obj(RegionEdge, WindowHandle) ``` #### ### Halcon 的开发环境与集成 Halcon 支持与多种编程语言集成,例如 C++ 和 C#。在实际项目中,通常需要将 Halcon 与 Visual Studio 集成,以实现更复杂的图像处理任务[^2]。此外,Halcon 提供了详细的 API 文档,帮助开发者快速掌握其接口调用方法。 #### ### 实际应用案例 Halcon 在工业领域的应用非常广泛,例如在电子制造中的缺陷检测、汽车零部件的质量控制等。一个典型的案例是使用 Halcon 的 Blob 分析功能对电路板上的焊点进行检测[^3]。通过设置合适的阈值和形态学操作,可以准确识别焊点的形状和大小。 #### ### 常见问题与解决方案 在使用 Halcon 过程中,可能会遇到一些常见问题,例如性能优化、多线程处理等。为了解决这些问题,建议参考官方文档或社区论坛 ihalcon.com 的讨论[^4]。同时,合理利用 Halcon 提供的调试工具,能够显著提高开发效率。 #### ### 开发流程与最佳实践 在开发基于 Halcon 的应用程序时,建议遵循以下原则: - **模块化设计**:将不同的功能模块分开实现,便于维护和扩展。 - **性能优化**:尽量减少不必要的计算步骤,充分利用硬件加速功能。 - **文档记录**:为每个模块编写详细的注释和文档,方便后续维护[^5]。 ```python # 示例代码:Halcon 中的多线程处理 import threading from halcon import * def process_image(image_path): read_image(Image, image_path) sobel_amp(Image, SobelImage, 'sum_abs', 3) threshold(SobelImage, RegionEdge, 100, 255) return RegionEdge # 创建线程 thread1 = threading.Thread(target=process_image, args=('image1.png',)) thread2 = threading.Thread(target=process_image, args=('image2.png',)) # 启动线程 thread1.start() thread2.start() # 等待线程完成 thread1.join() thread2.join() ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值