八大排序c++可运行精简版,一目了然

#include <iostream>
using namespace std;

// 插入排序开始=====================
void insert_sort(int a[], int n)
{
  for (int cur = 1; cur < n; ++cur)
  {
    int j = cur - 1;
    int t = a[cur];
    while (j >= 0)
    {
      if (a[j] > t)
        a[j+1] = a[j];
      else
        break;
      --j;
    }
    a[j+1] = t;
  }
}
// 插入排序结束=====================


// 选择排序开始=====================
void select_sort(int a[], int n)
{
  for (int i = 0; i < n - 1; ++i)
  {
    int k = i;
    for (int j = i + 1; j < n; ++j)
      if (a[j] < a[k])
        k = j;
    swap(a[i], a[k]);
  }
}
// 选择排序结束=====================


// 冒泡排序开始=====================
void buble_sort(int a[], int n)
{
  for (int k = 1; k <= n - 1; ++k)
  {
    int noswap = 1; //表示这一次没有交换
    for (int j = n - 1; j >= k; --j)
      if (a[j] < a[j-1])
      {
        swap(a[j], a[j-1]);
        noswap = 0;
      }
    if (noswap) break;
  }
}
// 冒泡排序结束=====================


// 快速排序开始=====================
int quick_sort_partion(int a[], int p, int q)
{
  int i = p - 1;
  for (int j = p; j <= q - 1; ++j)
  {
    if (a[j] < a[q])
      swap(a[j], a[++i]);
  }
  swap(a[++i], a[q]);
  return i;
}
void quick_sort_helper(int a[], int b, int e)
{
  if (b < e)
  {
    int mid = quick_sort_partion(a, b, e);
    quick_sort_helper(a, b, mid - 1);
    quick_sort_helper(a, mid + 1, e);
  }
}
void quick_sort(int a[], int n)
{
  quick_sort_helper(a, 0, n-1);
}
// 快速排序结束=====================


// 归并排序开始=====================
void merge_sort_helper(int a[], int copy[], int b, int e)
{
  if (b < e)
  {
    int mid = (e-b) / 2 + b;
    merge_sort_helper(copy, a, b, mid);
    merge_sort_helper(copy, a, mid + 1, e);

    int i = b, j = mid + 1, k = b;
    while (i <= mid && j <= e)
    {
      a[k++] = (copy[i] < copy[j] ? copy[i++] : copy[j++]);
    }
    while (i <= mid)
      a[k++] = copy[i++];
    while (j <= e)
      a[k++] = copy[j++];
  }
}
void merge_sort(int a[], int n)
{
  int *copy = new int[n];
  memcpy(copy, a, sizeof(a[0])*n);
  merge_sort_helper(a, copy, 0, n-1);
  delete[] copy;
}
// 归并排序结束=====================


// 堆排序开始=======================
void heap_sort_adjust(int a[], int n, int i)
{

  if (i <= n/2 - 1) //判断是否是叶子结点
  {
    int left = 2*i+1;
    int right = 2*i+2;
    int maxIndex = i;
    if (a[left] > a[maxIndex])
      maxIndex = left;
    if (right < n && a[right] > a[maxIndex])
      maxIndex = right;
    swap(a[i], a[maxIndex]);
    if (i != maxIndex) //一定要判断,否则死循环
      heap_sort_adjust(a, n, maxIndex);
  }
}
void heap_sort_build(int a[], int n)
{
  for (int i = n/2 -1; i >= 0; --i)
    heap_sort_adjust(a, n, i);

}
void heap_sort(int a[], int n)
{
  heap_sort_build(a, n);
  for (int i = n-1; i >= 1; --i)
  {
    swap(a[i], a[0]);
    heap_sort_build(a, i);
  }
}
// 堆排序结束=======================


// 希尔排序开始=====================
void shell_sort(int a[], int n)
{
  int d[3] = {5, 3, 1};
  for (int k = 0; k < 3; ++k)
  {
    for (int cur = d[k]; cur < n; cur += d[k])
    {
      int j = cur - d[k];
      int t = a[min(cur, n-1)];
      while (j >= 0)
      {
        if (a[j] > t)
          a[min(j+d[k], n-1)] = a[j];
        else
          break;
        j -= d[k];
      }
      a[min(j+d[k], n-1)] = t;
    }
  }
}
// 希尔排序结束=====================


// 基数排序开始=====================
//L表示关键码的个数
void radix_sort(int a[], int n, int L)
{
  int *bucket = new int[n];
  int count[10];
  int power = 1;

  for (int k = 1; k <= L; ++k)
  {
    memset(count, 0, sizeof(count[0]) * n);
    //统计每个桶的右边界
    for (int i = 0; i < n; ++i) ++count[(a[i]/power)%10];
    for (int i = 1; i < 10; ++i) count[i] += count[i-1];
    //装桶,这里从后往前扫描是因为边界值是从右往左递减的
    for (int i = n-1; i >= 0; --i) bucket[--count[(a[i]/power)%10]] = a[i];
    //收集
    memcpy(a, bucket, sizeof(a[0]) * n);
    power *= 10;
  }
  delete bucket;
}
// 基数排序结束=====================
int main()
{
  int a[10]={100,19,222,10,37,83,36,344,576,82};
  radix_sort(a, 10, 3);
  for (int i = 0; i < 10; ++i)
    cout << a[i] << " ";
  cout << endl;
  return 0;
}


 



最后,贴出几大排序的平均时间复杂度和最坏时间复杂度,以供参考




关于排序的稳定性

稳定的排序有

插入排序:(每次插入都是从后往前,两个数一样的话不会交换位置)

冒泡排序:(每次冒上去的都是最小的,两个数相同不会交换)

归并排序:(如果两个相等的数在同一个区间,显然后面的数不会跑到前面去,如果在不同的区间,后半个区间在归并后显然也是排在后面,可对照上面的代码)

基数排序:(两个数相同,如果从左到右扫描,那么前面的数肯定先被扔进桶内,如果从右往左扫描,那么先将右边的数扔到桶的后面,上面排序过程即是如此)

如果记不住的话,那么鬼插鸡毛,还记得住啊?记住,鬼插鸡毛很稳定哦,其他的都不稳定

:归并排序,:插入排序,:基数排序,:冒泡排序

来,和我一起读,鬼插鸡毛很稳定,鬼插鸡毛很稳定,鬼插鸡毛很稳定……读个99遍


关于时间复杂度,除了快速排序,其他排序的最低时间复杂度和最坏时间复杂度相同,因为逆序的数组每次划分都需要O(i)(i = n, n-1,...)的时间,所以快速排序最坏为O(n^2)


好了,就到这里吧,看不懂的留言,楼主保证秒回~



评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值