Matlab中配置LibSVM 总结

1.参考网站:

libsvm库下载:http://www.csie.ntu.edu.tw/~cjlin/libsvm/

视频:http://v.youku.com/v_showMini/id_XMjc2NTY3MzYw_ft_131.html 

详解:http://www.matlabsky.com/thread-11925-1-1.html


2.操作流程:

请注意:详细操作流程请参考上面的“详解”网站,这里只说大框架和详解里没有提到的问题。

A.设置path

File->set path ->add with subfolders->加入libsvm-3.11文件夹的路径

B. 在matlab中编译

目的:将libsvm-3.11\matlab 中 libsvmwrite.c 等 C++文件编译成 libsvmread.mexw32 等matlab文件,这样就可以在command window中被直接调用了。

注意:在最外面的Readme中有提到已经有编译好的文件,比如在libsvm-3.11\windows中也会看到libsvmread.mexw32,但这里不要被误导!还是需要你自己再编译一遍的!

如果是最新版MATLAB,mex过程有点不一样,具体如下:

>>mex –setup

MEX 配置为使用 'Microsoft Windows SDK 7.1 (C)' 以进行 C 语言编译。
Warning: The MATLAB C and Fortran API has changed to support MATLAB
     variables with more than 2^32-1 elements. In the near future
     you will be required to update your code to utilize the
     new API. You can find more information about this at:

http://www.mathworks.com/help/matlab/matlab_external/upgrading-mex-files-to-use-64-bit-api.html.
要选择不同的语言,请从以下选项中选择一种命令:
 mex -setup C++ 
 mex -setup FORTRAN
我们要选择的是C++编译器:

>> mex -setup C++ 
MEX 配置为使用 'Microsoft Windows SDK 7.1 (C++)' 以进行 C++ 语言编译。
Warning: The MATLAB C and Fortran API has changed to support MATLAB
     variables with more than 2^32-1 elements. In the near future
     you will be required to update your code to utilize the
     new API. You can find more information about this at:
     http://www.mathworks.com/help/matlab/matlab_external/upgrading-mex-files-to-use-64-bit-api.html.
这样就可以执行make过程了:

>> make
使用 'Microsoft Windows SDK 7.1 (C)' 编译。
MEX 已成功完成。
使用 'Microsoft Windows SDK 7.1 (C)' 编译。
MEX 已成功完成。
使用 'Microsoft Windows SDK 7.1 (C++)' 编译。
找不到 D:\MATLAB\R2014A\toolbox\libsvm-3.21\matlab\svmtrain.exp
找不到 D:\MATLAB\R2014A\toolbox\libsvm-3.21\matlab\svmtrain.exp
MEX 已成功完成。
使用 'Microsoft Windows SDK 7.1 (C++)' 编译。
找不到 D:\MATLAB\R2014A\toolbox\libsvm-3.21\matlab\svmpredict.exp
找不到 D:\MATLAB\R2014A\toolbox\libsvm-3.21\matlab\svmpredict.exp
MEX 已成功完成。
>>

C.加载数据集

就是这里搞了我一下午!

加载数据集

load heart_scale ;

有两个数据集,一个是C++的, 一个是matlab的。libsvm库中下载的是C++数据,

所以matlab加载我们下载的heart_scale是会报错的:

法1、下载matlab数据集(http://download.csdn.net/detail/abcjennifer/4215779

法2、用libsvmread而非load.  

这样就可以加载数据集了,完成该步骤后发现Workspace中出现了heart_scale_inst 和 heart_scale_label,说明正确。

ok,下一步我们来测试svm的训练和predict

D.train & predict

>> [heart_scale_label, heart_scale_inst] = libsvmread('heart_scale');
>> model = libsvmtrain(heart_scale_label, heart_scale_inst, '-c 1 -g 0.07');
*
optimization finished, #iter = 134
nu = 0.433785
obj = -101.855060, rho = 0.426412
nSV = 130, nBSV = 107
Total nSV = 130
>> [predict_label, accuracy, dec_values] = libsvmpredict(heart_scale_label, heart_scale_inst, model);
Accuracy = 86.6667% (234/270) (classification)

3.总结

本文借鉴了浙大天才美女http://blog.csdn.net/abcjennifer/article/details/7370177得很多内容,主要在补充了新版MATLAB下的一些编译细节。此外,对于编译后报的“没找到”不用管,不影响。
如果测试后没有Accuracy输出或输出为空,应该采用三个参量的返回值。具体如下:

>> [predict_label, accuracy, dec_values] = libsvmpredict(heart_scale_label, heart_scale_inst, model);
Accuracy = 86.6667% (234/270) (classification)
再次表示感谢!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值