EM算法

本文介绍了EM算法在解决实际问题中的应用,特别是在语音识别中如何利用EM算法优化高斯混合模型。通过二分线性模型和高斯情况的案例,详细阐述了E-步骤和M-步骤的计算过程,以及初始化和收敛的准则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我的书:
在这里插入图片描述
淘宝购买链接
当当购买链接
京东购买链接

前一篇文章提到了基于统计模型的VAD决策方法,在看《WebRTC之VAD算法,语音增强系列博文》时,其计算概率使用的高斯参数是给定的,那么问题来了;
1.webrtc中给定的参数是如何得到的?
2.这些参数能否适用你想要使用的场景?
3.这些场景和你的场景匹配度如何?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shichaog

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值