
声码器
文章平均质量分 93
在语音和音乐的应用场景中,声码器是最为关键的存在,不论是语音生成(TTS)以及音乐生成(Music Generation)中,还是倍速、变声等效果处理上,声码器的支持不可或缺,本博客围绕声码器的发展史,介绍声码器发展情况和相关的技术现状
shichaog
这个作者很懒,什么都没留下…
展开
-
语音合成之七语音克隆技术突破:从VALL-E到SparkTTS,如何解决音色保真与清晰度的矛盾?
更强大的说话人编码器的开发对于实现更好的语音克隆至关重要。YourTTS 的设计理念在于利用多语言训练的优势,提升模型在零样本多说话人文本到语音合成和语音转换方面的性能,并降低对大量数据的依赖,尤其是在低资源语言的场景下。将 TTS 视为对离散音频标记的语言建模任务,代表了该领域的一种范式转变,借鉴了语言模型在 NLP 中的成功经验,并可能为跨不同模态的生成式 AI 提供更统一的方法。然而,长久以来,如何才能在精确复制说话者音色的同时,确保合成语音的清晰度和自然度,一直是该领域面临的核心挑战。原创 2025-04-26 10:29:35 · 989 阅读 · 0 评论 -
语音合成之六端到端TTS模型的演进
近年来,基于大型语言模型的TTS模型,如2025年提出的SparkTTS ,以及侧重于可扩展性和多语种能力的Cosyvoice(2024年) ,相继涌现。注意力机制是Tacotron模型的一项关键创新,它使得解码器在生成每个音频帧时,能够自动地聚焦于输入文本序列的相关部分,从而学习文本特征与相应音频帧之间的对齐关系。首先,训练一个教师模型,然后从教师模型的注意力对齐中提取音素的持续时间,并使用教师模型生成的梅尔频谱图作为目标来训练FastSpeech模型及其时长预测器。原创 2025-04-25 23:25:27 · 794 阅读 · 0 评论 -
语音合成之五语音合成中的“一对多”问题主流模型解决方案分析
这些模型都利用深度学习架构,特别是Transformer或基于Transformer的模型,旨在生成自然且富有表现力的语音,并支持某种形式的说话人控制,包括语音克隆能力。FSQ优化了语音特征的提取,从而提升了合成语音的质量。SparkTTS的BiCodec架构通过将语义和说话人属性明确分离为不同的标记类型,为控制语音的不同方面提供了一种清晰的机制,从而直接解决了“一对多”问题。先进的TTS模型的目标不仅是生成可理解的语音,更重要的是能够捕捉和控制这些变化参数,从而产生更自然、更具表现力的音频。原创 2025-04-25 21:00:00 · 1230 阅读 · 0 评论 -
语音合成之四大语言模型(LLM)与TTS的深度融合
基于LLM的方法摆脱了音素建模,采用了LLM+Decoder架构,在大大简化了TTS的复杂度的同时,提高了合成的可控性,LLM作为这些TTS系统的核心组件或基础架构被反复提及,标志着TTS领域从传统的声学建模方法向利用LLM的语义理解和生成能力的重大转变。这种范式转变直接促成了零样本语音克隆和多语种支持等功能的进步。基于 LLM 的 TTS 技术正在迅速发展,LlaSA、CosyVoice 和 SparkTTS 等模型代表了该领域的重大进步。原创 2025-04-23 19:00:00 · 854 阅读 · 0 评论 -
第四章 神经网络声码器
WaveNet 是DeepMind 提出的一种深度学习声码器,2016 年 9 月的一篇论文中进行了概述[1],旨在能够直接从原始音频数据生成语音。WaveNet 最初是为了改进传统的文本到语音(TTS)系统的语音质量提出的,其采用卷积神经网络生成音频波形,实现了比传统方法更自然的声音。WaveNet 的主要挑战在于需求巨大的计算资源,这使得它在实际应用中受到了限制。原创 2025-01-12 23:04:26 · 1372 阅读 · 0 评论 -
第三章 WORLD 声码器
WORLD Vocoder由日本学者开发,主要用于提高音频信号处理时音质的保真度,通过对传统的Vocoder方法进行改良,提供更加清晰的语音合成效果,常用于语音研究和音乐制作,其优点在于可以用在实时系统上,在算力和效果上做了很好的平衡。谱分析(Spectral Analysis),谱分析是用来从语音信号中提取声谱特征的技术。它涉及到将语音信号分解为一系列的频率组成部分,以便于更细致地理解和处理这些成分。原创 2025-01-12 15:08:51 · 1038 阅读 · 0 评论 -
第二章 线性预测编码(LPC)
这里主要是LPC声码器,这部分的内容绝大部分摘自我的专利《》,对内部细致的实现,以及LPC声码器在音频编解码上如何使用的,可以参看该专栏线性预测编码 (LPC) 是一种主要用于音频信号处理和语音处理的方法,用于使用线性预测模型的信息以压缩形式表示数字语音信号的频谱包络。LPC 通过估计共振峰、从语音信号中去除它们的影响以及估计剩余“噪声”的强度和频率来分析语音信号。去除共振峰的过程称为逆滤波,减去滤波后的建模信号后剩余的信号称为残差。LPC 是语音编码、语音合成以及歌声合成中使用最广泛的方法。原创 2025-01-11 20:22:19 · 1374 阅读 · 0 评论 -
第一章 相位编码器(Phase Vocoder)
开篇先留一个问题,现在TTS大模型、音乐生成大模型的“电音”/“机器音”/“合成音”、“金属感”、以及清晰度低在信号层面该如何解释?原创 2025-01-11 17:50:49 · 1442 阅读 · 0 评论