
语音合成
文章平均质量分 93
专注于语音合成技术发展和应用
shichaog
这个作者很懒,什么都没留下…
展开
-
语音合成之十六 语音合成(TTS)跳跃与重复问题的解析:成因、机制及解决方案
文本转语音(Text-to-Speech, TTS)技术致力于将文本信息流畅、自然地转换为语音。然而,在实际应用中,合成语音常出现“跳跃”(漏词,Omission)或“重复”(重复,Repetition)等问题,严重影响了语音的清晰度和自然度。跳跃指的是合成语音遗漏了输入文本中本应存在的音素、词语甚至整个短语;重复则指音素、词语或短语在非预期的情况下被多次读出。这些问题,连同“含混不清”(muffling)和“提前中止”(early stop)等,常被归类为“严重错误”(gross errors) ,它们是原创 2025-05-24 23:25:39 · 418 阅读 · 0 评论 -
语音合成之十五 语音合成(TTS)分句生成拼接时的响度一致性问题:现状、成因与对策
摘要:TTS分句拼接中的响度一致性挑战与解决方案语音合成(TTS)系统在分句生成拼接时普遍存在响度不一致问题,表现为句子间音量跳变,影响听觉体验。该问题源于分段生成的固有特性,包括频谱失配、缺乏上下文感知、韵律预测差异等。现代端到端神经模型虽提升语音质量,却因独立生成片段而加剧了这一问题。解决方案主要包括:后处理技术(如LUFS感知响度归一化)和基于模型的韵律控制(显式能量预测、长时上下文建模)。尤其值得注意的是,情感TTS在追求表现力的同时更易产生响度波动,需在韵律控制与一致性间取得平衡。未来需进一步研原创 2025-05-23 23:12:42 · 819 阅读 · 0 评论 -
语音合成之十四 文本转语音(TTS)开源数据集
近年来,深度学习推动了文本转语音(TTS)技术的显著进步,能够生成高度逼真且可控的语音。高质量、大规模且多样化的数据集是训练先进TTS模型的基础。TTS数据集需要包含音频-文本校对、时间对齐、元数据等,以捕捉语音的细微差别。数据集的构建涉及语言学、信号处理和数据科学,是TTS系统开发的核心环节。数据增强策略如噪声注入、音高变换等,可提高模型泛化能力。数据预处理中的采样率统一、文本规范化和声学特征提取是确保模型性能的关键步骤。文本规范化处理数字、缩写等非标准词,音素化策略则涉及字符、字位与音素的转换,对合成语原创 2025-05-14 20:49:58 · 751 阅读 · 0 评论 -
语音合成之十三 中文文本归一化在现代语音合成系统中的应用与实践
中文文本归一化在现代语音合成系统(TTS)中扮演着关键角色,旨在将书面文本转换为标准化的口语化形式,以确保合成语音的准确性和自然度。中文由于其复杂的语言特性,如多音字、数字、日期等非标准词(NSW)的多样性,对文本归一化提出了挑战。归一化过程包括预处理、非标准词识别与转换、后处理三个主要阶段,涉及字符宽度转换、Unicode标准化、繁简转换等步骤。主流TTS系统如SparkTTS和CosyVoice虽然依赖大型语言模型(LLM)处理文本,但仍需显式的文本归一化模块来确保复杂中文输入下的语音合成质量。原创 2025-05-11 21:17:04 · 716 阅读 · 0 评论 -
语音合成之十二 TTS声学编解码器的演进
从HiFi-GAN在波形合成效率与保真度上取得的突破,到XCodec2.0和BiCodec在语义丰富性与可控性方面的探索,TTS声学编解码技术在过去数年中取得了令人瞩目的进展。GAN的基石地位: 生成对抗网络(GAN)仍然是训练高保真声码器和编解码器的核心技术之一,尽管通常会辅以感知损失和特征匹配损失来进一步提升效果。原创 2025-05-08 09:03:37 · 1012 阅读 · 0 评论 -
语音合成之十一 提升TTS语音合成效果:低质量数据清洗、增强与数据扩增
在开始收集和处理数据之前,详细的规划至关重要,它决定了项目的可行性和最终效果。发音人策略:首先要确定是构建单发音人还是多发音人数据集。对于初学者或特定应用(如语音克隆),单发音人数据集更简单,易于管理和训练。多发音人模型则需要更复杂的数据平衡策略和发音人身份(Speaker ID)管理技术。数据来源与授权:明确音频数据的来源,例如有声读物、播客、广播档案、专业录音或自行录制。至关重要的一点是,必须确保拥有使用这些数据进行模型训练的合法权利或许可。忽视版权问题可能导致严重的法律风险。原创 2025-05-05 22:00:00 · 958 阅读 · 0 评论 -
语音合成之十韵律之美:TTS如何模拟语音的节奏和语调
韵律,也称为超音段特征(Suprasegmentals),是指语音中超越单个音素(元音和辅音)层面,通常应用于音节、词语、短语乃至整个句子序列的语音特征。它是语音的“调”与“节奏”的研究,关注这些特征如何贡献于意义的表达。音高/语调 (Pitch / Intonation): 指声音感知的基频(Fundamental Frequency,F0F_0F0)高低变化。原创 2025-04-29 19:00:00 · 1044 阅读 · 0 评论 -
语音合成之九注意力机制在TTS中的应用:让模型“听懂”文本
早期的TTS系统依赖于预先录制的语音片段或基于规则的参数模型,在自然度和灵活性方面存在诸多限制。深度学习的出现,特别是端到端神经TTS模型的兴起,极大地提升了语音合成的质量,使得合成的语音更加接近人类的自然发声。在基于神经网络的TTS发展过程中,注意力机制扮演了至关重要的角色。它有效地解决了传统序列到序列模型在处理长文本时遇到的瓶颈问题,并为模型提供了在生成语音的每个时刻关注输入文本相关部分的能力。原创 2025-04-28 19:00:00 · 733 阅读 · 0 评论 -
语音合成之八-情感化语音合成的演进路线
人类的交流沟通本质上是充满情感的。无论是日常对话还是正式演讲,语音都不仅仅是信息的载体,更是情感、态度和意图的表达方式 。情感化语音合成(Emotional Speech Synthesis, ESS)旨在弥合功能性文本到语音(Text-to-Speech, TTS)系统与真正类人交互之间的鸿沟。它赋予机器通过语音表达各种情感的能力,使得人机交互更加自然、生动和富有同理心 。情感化语音合成技术对于提升用户体验至关重要,尤其是在虚拟助手、游戏、个性化服务等应用场景中,能够显著增强系统的亲和力和吸引力 。早期原创 2025-04-27 19:00:00 · 1249 阅读 · 0 评论 -
语音合成之七语音克隆技术突破:从VALL-E到SparkTTS,如何解决音色保真与清晰度的矛盾?
更强大的说话人编码器的开发对于实现更好的语音克隆至关重要。YourTTS 的设计理念在于利用多语言训练的优势,提升模型在零样本多说话人文本到语音合成和语音转换方面的性能,并降低对大量数据的依赖,尤其是在低资源语言的场景下。将 TTS 视为对离散音频标记的语言建模任务,代表了该领域的一种范式转变,借鉴了语言模型在 NLP 中的成功经验,并可能为跨不同模态的生成式 AI 提供更统一的方法。然而,长久以来,如何才能在精确复制说话者音色的同时,确保合成语音的清晰度和自然度,一直是该领域面临的核心挑战。原创 2025-04-26 10:29:35 · 989 阅读 · 0 评论 -
语音合成之六端到端TTS模型的演进
近年来,基于大型语言模型的TTS模型,如2025年提出的SparkTTS ,以及侧重于可扩展性和多语种能力的Cosyvoice(2024年) ,相继涌现。注意力机制是Tacotron模型的一项关键创新,它使得解码器在生成每个音频帧时,能够自动地聚焦于输入文本序列的相关部分,从而学习文本特征与相应音频帧之间的对齐关系。首先,训练一个教师模型,然后从教师模型的注意力对齐中提取音素的持续时间,并使用教师模型生成的梅尔频谱图作为目标来训练FastSpeech模型及其时长预测器。原创 2025-04-25 23:25:27 · 794 阅读 · 0 评论 -
语音合成之五语音合成中的“一对多”问题主流模型解决方案分析
这些模型都利用深度学习架构,特别是Transformer或基于Transformer的模型,旨在生成自然且富有表现力的语音,并支持某种形式的说话人控制,包括语音克隆能力。FSQ优化了语音特征的提取,从而提升了合成语音的质量。SparkTTS的BiCodec架构通过将语义和说话人属性明确分离为不同的标记类型,为控制语音的不同方面提供了一种清晰的机制,从而直接解决了“一对多”问题。先进的TTS模型的目标不仅是生成可理解的语音,更重要的是能够捕捉和控制这些变化参数,从而产生更自然、更具表现力的音频。原创 2025-04-25 21:00:00 · 1230 阅读 · 0 评论 -
语音合成之四大语言模型(LLM)与TTS的深度融合
基于LLM的方法摆脱了音素建模,采用了LLM+Decoder架构,在大大简化了TTS的复杂度的同时,提高了合成的可控性,LLM作为这些TTS系统的核心组件或基础架构被反复提及,标志着TTS领域从传统的声学建模方法向利用LLM的语义理解和生成能力的重大转变。这种范式转变直接促成了零样本语音克隆和多语种支持等功能的进步。基于 LLM 的 TTS 技术正在迅速发展,LlaSA、CosyVoice 和 SparkTTS 等模型代表了该领域的重大进步。原创 2025-04-23 19:00:00 · 854 阅读 · 0 评论 -
语音合成之三MeloTTS模型
你是否曾为找不到一款既能流利说中文,又能自然地混合英文的语音合成工具而烦恼?或者,你是否希望在普通的电脑上也能实现快速、高质量的语音合成,而无需昂贵的专业硬件?如果你的答案是肯定的,那么MeloTTS绝对值得你关注。MeloTTS 是一款由 MyShell AI 开发的高质量、多语种文本转语音(TTS)库。它最引人注目的特点之一是其对多种语言的支持,包括英语、西班牙语、法语、中文、日语和韩语。对于中文用户来说,MeloTTS 尤其友好,因为它能够出色地处理中英文混合发音,这在许多实际应用场景中都非常实用。原创 2025-04-23 10:02:32 · 988 阅读 · 0 评论 -
语音合成之二TTS模型损失函数进化史
以掷骰子为例,一个六面体的骰子,从统计意义上来说,只要采样数量足够多,那么六个面的数字[1,2,3,4,5,6]应该是均匀分布的,如果采用L1或者L2的loss,让模型预测足够次数掷骰子的点数,那么为了是预测统计误差是最小,模型倾向于预测3或者4,可以看出来两端的极值被模型忽略了,模型输出对齐的是统计值偏好。但是这样训练的模型逼真度仍然较差,其主要的原因是引言里提到的“数值逼近”而非“听觉逼近”,而且L1/L2的“数值逼近”逼近的统计数值,而不是具有随机性的真实分布的数值。原创 2025-04-18 19:00:00 · 535 阅读 · 0 评论 -
语音合成之一TTS技术发展史综述
文本转语音(Text-to-Speech,TTS)技术是一种将书面文本自动转换为人类语音的技术。它是一门交叉学科,融合了语言学、声学、计算机科学和电子工程等多个领域的知识。TTS技术通过计算机合成逼真的语音,使得用户能够通过听觉获取信息,极大地扩展了人机交互的方式。从早期的机械发声装置到如今高度智能化的语音合成系统,TTS技术已经渗透到我们日常生活的方方面面,例如智能语音助手(亚马逊Alexa、豆包、苹果Siri等)、屏幕阅读器(为视力障碍人士和阅读障碍者)、教育软件、媒体与娱乐(播客、有声读物、视频/游戏原创 2025-04-17 10:46:41 · 957 阅读 · 0 评论