[数据结构]线性结构——队列

原创 2015年07月07日 20:43:38

栈和队列是两种特殊的线性表,它们的逻辑结构和线性表相同,只是其运算规则较线性表有更多的限制,故又称它们为运算受限的线性表。栈和队列被广泛应用于各种程序设计中。

队列的基本概念

  • 队列(Queue):也是运算受限的线性表。是一种先进先出(FirstIn First Out ,简称FIFO)的线性表。只允许在表的一端进行插入,而在另一端进行删除。
  • 队首(front):允许进行删除的一端称为队首。
  • 队尾(rear):允许进行插入的一端称为队尾。

例如:排队购物。操作系统中的作业排队。先进入队列的成员总是先离开队列。

队列中没有元素时称为空队列。在空队列中依次加入元素a1,a2,...,an之后,a是队首元素,an是队尾元素。显然退出队列的次序也只能是a1,a2,...,an即队列的修改是依先进先出的原则进行的。

队列的抽象数据类型定义

ADT Queue
{
    数据对象:D={ ai|ai∈ElemSet, i=1,2, ..., n,n >=0},
    数据关系:R= {<ai-1,ai> | ai-1,ai∈D, i=2,3,...,n}约定a1端为队首,an端为队尾。
    基本操作:
        Create():创建一个空队列;
        EmptyQue():若队列为空,则返回true,否则返回flase;
        ⋯⋯
        InsertQue(x):向队尾插入元素x;
        DeleteQue(x):删除队首元素x;
}

队列的顺序表示和实现

利用一组连续的存储单元(一维数组)依次存放从队首到队尾的各个元素,称为顺序队列。

对于队列,和顺序栈相类似,也有动态和静态之分。

//静态顺序队列,其类型定义如下: 
#define MAX_QUEUE_SIZE 100
typedef struct queue
{ 
    ElemType Queue_array[MAX_QUEUE_SIZE] ; 
    int front ;
    int rear ;
}SqQueue;

队列的顺序存储结构

设立一个队首指针front,一个队尾指针rear,分别指向队首和队尾元素。
  • 初始化:front=rear=0。
  • 入队:将新元素插入rear所指的位置,然后rear加 1。
  • 出队:删去front所指的元素,然后加1并返回被删 元素。
  • 队列为空:front=rear。
  • 队满:rear=MAX_QUEUE_SIZE-1或front=rear。

在非空队列里,队首指针始终指向队头元素,而 队尾指针始终指向队尾元素的下一位置。



循环队列

为充分利用向量空间,克服上述“假溢出”现象的方法是:将为队列分配的向量空间看成为一个首尾相接的圆环,并称这种队列为循环队列(CircularQueue)

在循环队列中进行出队、入队操作时,队首、队尾指针仍要加1,朝前移动。只不过当队首、队尾指针指向向量上界(MAX_QUEUE_SIZE-1),其加1操作的结果是指向向量的下界0。这种循环意义下的加1操作可以描述为:

if(i+1==MAX_QUEUE_SIZE)
    i=0;
else
    i++;
//其中:i代表队首指针(front)或队尾指针(rear);
//用模运算可简化为:i=(i+1)%MAX_QUEUE_SIZE;

显然,为循环队列所分配的空间可以被充分利用,除非向量空间真的被队列元素全部占用,否则不会上溢。因此,真正实用的顺序队列是循环队列。如,设有循环队列QU[0,5],其初始状态是front=rear=0,各种操作后队列的头、尾指针的状态变化情况如下图所示


入队时尾指针向前追赶头指针,出队时头指针向前 追赶尾指针,故队空和队满时头尾指针均相等。因此, 无法通过front=rear来判断队列“空”还是“满”。解决 此问题的方法是:约定入队前,测试尾指针在循环意义 下加1后是否等于头指针,若相等则认为队满。即:

  • rear所指的单元始终为空。
  • 循环队列为空:front=rear。
  • 循环队列满:(rear+1)%MAX_QUEUE_SIZE =front。
//循环队列的初始化
SqQueue Init_CirQueue(void)
{ 
    SqQueue Q; 
    Q.front=Q.rear=0; 
    return(Q);
}
//入队操作  
Status Insert_CirQueue(SqQueue Q , ElemType e)
/* 将数据元素e插入到循环队列Q的队尾 */
{ 
    if ((Q.rear+1)%MAX_QUEUE_SIZE== Q.front)
        return ERROR; /* 队满,返回错误标志 */
    Q.Queue_array[Q.rear]=e; /* 元素e入队 */
    Q.rear=(Q.rear+1)% MAX_QUEUE_SIZE; /* 队尾指针向前移动 */
    return OK; /* 入队成功 */ 
}

//出队操作  
Status Delete_CirQueue(SqQueue Q, ElemType *x )
/* 将循环队列Q的队首元素出队 */ 
{ 
    if (Q.front+1== Q.rear)
        return ERROR; /* 队空,返回错误标志 */ 
    *x=Q.Queue_array[Q.front]; /* 取队首元素 */ 
    Q.front=(Q.front+1)% MAX_QUEUE_SIZE;/* 队首指针向前移动 */ 
    return OK ;
}

队列的链式表示和实现

队列的链式存储结构简称为链队列,它是限制仅在表头进行删除操作和表尾进行插入操作的单链表。需要两类不同的结点:数据元素结点,队列的队首指针和队尾指针的结点



//数据元素结点类型定义:
typedef struct Qnode
{ 
    ElemType data;
    struct Qnode *next; 
}QNode;
//指针结点类型定义:
typedef struct link_queue
{ 
    QNode *front , *rear; 
}Link_Queue;

链队运算及指针变化

链队的操作实际上是单链表的操作,只不过是删除在表头进行,插入在表尾进行。插入、删除时分别修改不同的指针。


//链队列的基本操作
//链队列的初始化
LinkQueue *Init_LinkQueue(void) 
{ 
    LinkQueue *Q ; 
    QNode *p ;
    p=(QNode *)malloc(sizeof(QNode)) ; /* 开辟头结点 */ 
    p->next=NULL ;
    Q=(LinkQueue *)malloc(sizeof(LinkQueue)) ;/* 开辟链队的指针结点 */ 
    Q.front=Q.rear=p ; 
    return(Q) ;
}

//链队列的入队操作  
//在已知队列的队尾插入一个元素e ,即修改队尾指针 (Q.rear)。
Status Insert_CirQueue(LinkQueue *Q , ElemType e)
/* 将数据元素e插入到链队列Q的队尾 */ 
{ 
    p=(QNode *)malloc(sizeof(QNode)) ;
    if (!p) 
        return ERROR;
    /* 申请新结点失败,返回错误标志 */
    p->data=e ; 
    p->next=NULL ; /* 形成新结点 */ 
    Q.rear->next=p ; 
    Q.rear=p ; /* 新结点插入到队尾 */ 
    return OK;
}

//链队列的出队操作  
Status Delete_LinkQueue(LinkQueue *Q, ElemType *x)
{
    QNode *p ;
    if (Q.front==Q.rear) 
        return ERROR ; /* 队空 */ 
    p=Q.front->next ; /* 取队首结点 */ 
    *x=p->data ;
    Q.front->next=p->next ; /* 修改队首指针 */
    if (p==Q.rear) 
        Q.rear=Q.front ;/* 当队列只有一个结点时应防止丢失队尾指针 */ 
    free(p) ;
    return OK ; 
}

//链队列的撤消  
void Destroy_LinkQueue(LinkQueue *Q ) /* 将链队列Q的队首元素出队 */
{ 
    while (Q.front!=NULL)
    { 
        Q.rear=Q.front->next;/* 令尾指针指向队列的第一个结点 */ 
        free(Q.front); /* 每次释放一个结点 */
        Q.ront=Q.rear;/* 第一次是头结点,以后是元素结点 */ 
    } 
}

版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

常用数据结构--线性结构

数据结构是计算机存储、组织数据的方式。常见的数据结构分类方式如下图: 常用的线性结构有:线性表,栈,队列,循环队列,数组。线性表中包括顺序表、链表等,其中,栈和队列只是属于逻辑上的概念,实际...

树与二叉树的一些概念

1.树中的一些基本概念总结: 1)祖先/子孙:从树中的一个指定结点x到根结点r的唯一路径上的所有结点都是x的祖先;x为它们的子孙。 注:每个结点都是自己本身的祖先和子孙。 2)真祖先...

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

【数据结构】树与二叉树的区别

6.二叉树与树的区别? 1)树中结点的最大度数没有限制,而二叉树结点的最大度数为2; 2)树的结点无左、右之分,而二叉树的结点有左、右之分。 7.什么是完全二叉树? 若设二叉树的高度为h,除第 h 层...

树和二叉树

一、树的概念 1、树的特征为有一个特定的根节点,它只有后继没有前驱 2、结点的度:结点拥有的子树的数目 3、树的度:树中结点度的最大值 4、祖先结点:从根到该结点所经过的所有结点 5、 二...

[数据结构]线性结构——队列

栈和队列是两种特殊的线性表,它们的逻辑结构和线性表相同,只是其运算规则较线性表有更多的限制,故又称它们为运算受限的线性表。栈和队列被广泛应用于各种程序设计中。 队列的基本概念 队列(Queue):...

【数据结构】线性循环队列

线性队列和线性堆栈有点相似,不过队列里面的数据是“先进先出”,

线性结构之队列

线性结构之队列计算机输入输出缓冲区的结构就是队列的应用,队列是另一种限定性线性表,只允许在表的一端进行,而删除在表的另一端进行,这种结构叫做队或队列,把允许插入的一端叫做队尾,把允许删除的一端叫做队头...

3. 线性结构--队列

队列定义 具有一定操作约束的线性表,只能在一端插入,而在另一端删除数据插入:入队列(AddQ) 数据删除:出队列(DeleteQ)、 先来先服务 先进先出:FIFO 抽象数据类型描述 类型名称:队...

线性结构——队列

前言:基本所有的代码都是在Linux环境下运行,若遇到文件类型问题,在Linux系统下可以使用dos2unix,unix2dos命令改变,在Windows系统下可以使用UltraEdit文本编辑器改变...

线性结构_队列

队列定义:一种可以实现“先进先出”的存储结构 这里主要讲述的是静态队列。 静态队列的参数:front以及rear。 front为静态队列的首个有效元素。rear为静态队列最后一个有效...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)