『 天池竞赛』O2O优惠券使用预测思路总结

原创 2017年01月03日 16:36:39

赛题地址:https://tianchi.shuju.aliyun.com/competition/introduction.htm?spm=5176.100065.200879.2.6r6s4g&raceId=231587

第一赛季数据


目录


正式开始做是从十月底开始的,之前参加了新手赛,而这一次正式赛可以说是真正认真做的一次,中间和队友一起学习了很多,也有小小的收获,不管这次成绩如何,以后还有机会。

我的成绩


数据与评价方式

赛题提供用户在2016年1月1日至2016年6月30日之间真实线上线下消费行为,预测用户在2016年7月领取优惠券后15天以内的使用情况。 使用优惠券核销预测的平均AUC(ROC曲线下面积)作为评价标准。 即对每个优惠券coupon_id单独计算核销预测的AUC值,再对所有优惠券的AUC值求平均作为最终的评价标准。
当测试集中的正负样本的分布变化的时候,ROC曲线能够保持不变。因为在实际的数据集中经常会出现类不平衡,所以次点也是AUC指标的优势。


解决方案

提供数据的区间是2016-01-01~2016-06-30,预测七月份用户领券使用情况,即用或者不用,转化为二分类问题,然后通过分类算法预测结果。首先就是特征工程,其中涉及对数据集合的划分,包括提取特征的区间和训练数据区间。接着就是从特征区间中提取特征,包括用户特征、商户特征、优惠券特征、用户商户组合特征、用户优惠券组合特征。后期在测试区间提取了当天的前后7/3/1天的领券信息(这里面后七天的特征其实是不能应用于工业应用的,因为实际预测中你无法知道后7/3/1天的领券信息),提升较大。最后使用GBDT、RandomForest、LR进行基于rank的分类模型融合


数据划分

最初没有使用数据划分,导致特征中产生数据泄露,以至于在训练数据上效果很好,线下测试也还不错,在线上表现确差强人意,后来划分了之后有明显提升。

集合 预测区间 特征区间
预测集 领券:20160701~20160731 领券&消费:20160101~20160630
训练集 领券:20160515~20160615
消费:20160515~20160630
领券:20160101~20160501
消费:20160101~20160515

可以划分多个训练集。


特征工程

主要有五大特征类:用户特征、商户特征、优惠券特征、用户商户组合特征、用户优惠券组合特征,赛题包括online和offline的数据,由于里面只有部分用户重合,商户优惠券等并未有重合,个人臆测线上应该是淘宝天猫的购买消费数据,有一定关联,但关系微弱,因此只向其中提取了用户特征。而offline数据集就提取了所有五个特征类。一下是各部分特征:

  • 用户特征:u

    • 线下领取优惠券但没有使用的次数 u1
    • 线下普通消费次数 u2
    • 线下使用优惠券消费的次数 u3
    • 线下平均正常消费间隔 u4
    • 线下平均优惠券消费间隔 u5
    • u3/u1 使用优惠券次数与没使用优惠券次数比值 u6
    • u3/(u2+u3) 表示用户使用优惠券消费占比 u7
    • u4/15 代表15除以用户普通消费间隔,可以看成用户15天内平均会普通消费几次,值越小代表用户在15天内普通消费概率越大 u8
    • u5/15 代表15除以用户优惠券消费间隔,可以看成用户15天内平均会普通消费几次,值越大代表用户 在15天内普通消费概率越大 u9
    • 领取优惠券到使用优惠券的平均间隔时间 u10
    • u10/15 表示在15天内使用掉优惠券的值大小,值越小越有可能,值为0表示可能性最大 u11
    • 领取优惠券到使用优惠券间隔小于15天的次数 u12
    • u12/u3 表示用户15天使用掉优惠券的次数除以使用优惠券的次数,表示在15天使用掉优惠券的可能,值越大越好。 u13
    • u12/u1 F014 表示用户15天使用掉优惠券的次数除以领取优惠券未消费的次数,表示在15天使用掉优惠券的可能,值越大越好。 u14
    • u1+u3 领取优惠券的总次数 u15
    • u12/u15 F016 表示用户15天使用掉优惠券的次数除以领取优惠券的总次数,表示在15天使用掉优惠券的可能,值越大越好。 u16
    • u1+u2 一共消费多少次 u17
    • 最近一次消费到当前领券的时间间隔 u18
    • 最近一次优惠券消费到当前领券的时间间隔 u19
    • 用户当天领取的优惠券数目 u20
    • 用户前第i天领取的优惠券数目 u20si
    • 用户后第i天领取的优惠券数目 u20ai
    • 用户前7天领取的优惠券数目 u21
    • 用户前3天领取的优惠券数目 u22
    • u22/u21 u23
    • u20/u22 u24
    • 用户后7天领取的优惠券数目 u25
    • 用户后3天领取的优惠券数目 u26
    • u26/u25 u27
    • u20/u26 u28
    • 用户训练、预测时间领取的优惠券数目 u29
    • 用户当天领取的不同优惠券数目 u30
    • 用户前第i天领取的不同优惠券数目 u30si
    • 用户后第i天领取的不同优惠券数目 u30ai
    • 用户训练、预测时间领取的不同优惠券数目 u31
    • 按照7/4/2分解训练、预测时间,提取此段窗口时间的特征
    • 用户7/4/2天领取的优惠券数目 u32_i
    • 用户7/4/2天所领取的优惠券优惠率r1/r2/r3/r4排名 u_ri_ranki
    • 用户7/4/2天所领取的优惠券优惠率r1/r2/r3/r4排名 u_ri_dense _ranki
    • u32_4/u32_7 u33
    • u32_2/u32_4 u34
    • u32_2/u32_7 u35
    • u20/u32_2 u36

    • 线上领取优惠券未使用的次数 action=2 uo1

    • 线上特价消费次数 action=1 and cid=0 and drate=”fixed” uo2
    • 线上使用优惠券消费的次数 uo3
    • 线上普通消费次数 action=1 and cid=0 and drate=”null” uo4
    • 线上领取优惠券的次数 uo1+uo3 uo5
    • uo3/uo5 线上使用优惠券次数除以线上领取优惠券次数,正比 uo6
    • uo3/uo4 线上使用优惠券次数除以线上普通消费次数,正比 uo7
    • uo2/uo4线上特价消费次数除以线上普通消费次数 uo8

    • 加入训练预测时间前一个月的窗口特征

    • 线下领取优惠券但没有使用的次数 uw1

    • 线下普通消费次数 uw2
    • 线下使用优惠券消费的次数 uw3
    • 线下平均正常消费间隔 uw4
    • 线下平均优惠券消费间隔 uw5
    • uw3/uw1 使用优惠券次数与没使用优惠券次数比值 uw6
    • uw3/(uw2+uw3) 表示用户使用优惠券消费占比 uw7
    • uw4/15 代表15除以用户普通消费间隔,可以看成用户15天内平均会普通消费几次,值越小代表用户在15天内普通消费概率越大 uw8
    • uw5/15 代表15除以用户优惠券消费间隔,可以看成用户15天内平均会普通消费几次,值越大代表用户在15天内普通消费概率越大 uw9
    • 领取优惠券到使用优惠券的平均间隔时间 uw10
    • uw10/15 表示在15天内使用掉优惠券的值大小,值越小越有可能,值为0表示可能性最大 uw11
    • 领取优惠券到使用优惠券间隔小于15天的次数 uw12
    • uw12/uw3 表示用户15天使用掉优惠券的次数除以使用优惠券的次数,表示在15天使用掉优惠券的可能,值越大越好。 uw13
    • uw12/uw1 F014 表示用户15天使用掉优惠券的次数除以领取优惠券未消费的次数,表示在15天使用掉优惠券的可能,值越大越好。 uw14
    • uw1+uw3 领取优惠券的总次数 uw15
    • uw12/uw15 F016 表示用户15天使用掉优惠券的次数除以领取优惠券的总次数,表示在15天使用掉优惠券的可能,值越大越好。 uw16
    • F01+F02 一共消费多少次 uw17

  • 商户特征:m
    • 商户一共的消费笔数:m0
    • 商户优惠券消费笔数:m1
    • 商户正常的消费笔数:m2
    • 没有被使用的优惠券: m3
    • 商户发放优惠券数目:m3+m1 m4
    • 商户优惠券使用率:m1/m4 m5
    • 商户在训练、预测时间发行的优惠券数目 m6
    • 商户当天发行的优惠券数目 m7
    • 商户在训练、预测时间有多少人在此店领券 m8
    • 商户在当天有多少人在此店领券 m9
    • 按照7/4/2分解训练、预测时间,提取此段窗口时间的特征
    • 7/4/2天此商店优惠券发放数目 m10_i
    • m9 / m10_7 m11
    • m9 / m10_4 m12
    • m9 / m10_2 m13
    • m10_2 / m10_4 m14

  • 优惠券特征:c
    • 折扣类的优惠券折扣率 r1
    • 满减类优惠券满减金额 r2
    • 满减类优惠券减的金额 r3
    • 满减类优惠券优惠率 (r2-r3)/r2 r4
    • c1+c2 此优惠券一共发行多少张 c0
    • 此优惠券一共被使用多少张 c1
    • 没有使用的数目 c2
    • c1/c0 优惠券使用率 c3
    • 优惠力度 c5
    • 优惠力度在当天所领取优惠券里面排名 c5_rank
    • 优惠力度在当天所领取优惠券里面排名 c5_denserank
    • 优惠力度在当天同一店家所领取优惠券里面排名 c5_rankm
    • 优惠力度在当天所领取优惠券里面百分比排名 c5_rankp
    • 优惠力度在当天同一店家所领取优惠券里面百分比排名 c5_rankmp
    • 此优惠券在训练、预测时间发行了多少张 c6
    • 此优惠券在当天发行了多少张 c7
    • 领券当天周几 c8
    • 领券当天是否周末 c9 c8,c9去掉效果更好了。。。。
    • 此优惠券在当天被多少人领过 c10
    • 此优惠券在训练、预测时间被多少个人领过 c11
    • 此优惠券最后一次领券时间到此领券时间的间隔 c12
    • 此优惠券最后一次消费时间到此领券时间的间隔 c13
    • 按照7/4/2分解训练、预测时间,提取此段窗口时间的特征
    • 7/4/2天此优惠券发放数目 c14_i
    • c10 / c14_7 AS c15
    • c10 / c14_4 AS c16
    • c14_2 / c14_4 AS c17
    • c10 / c14_2 AS

  • 用户和商户组合特征:um
    • 用户在商店总共消费过几次 um0
    • 用户在商店使用优惠券几次 um1
    • 用户在商店领取优惠券未消费次数 um2
    • 用户在商店普通消费次数 um3
    • um1/(um1+um2) 用户在此商户优惠券使用率 um4
    • um0/(u2+u3) 值大表示用户比较常去的商户 um5
    • um1/u3 值大表示用户比较喜欢在那个商户使用优惠券 um6
    • 用户在训练、预测时间在此商店领取的优惠券数目 um7
    • 用户当天在此商店领取的优惠券数目 um8
    • 按照7/4/2分解训练、预测时间,提取此段窗口时间的特征
    • 7/4/2天此用户在此商店领取的优惠券发放数目 um9_i
    • um8 / um9_7 um10
    • um8 / um9_4 um11
    • um8 / um9_2 um12
    • um9_2 / um9_4 um13

  • 用户和优惠券组合特征:uc

    • 用户领取的优惠券数目 uc0
    • 用户领取未消费的优惠券数目 uc1
    • 用户消费了此优惠券的数目 uc2
    • uc02/uc0 uc3
    • 用户在此期间领取了多少张此优惠券 uc4 partiton by uid, cid
    • 用户在当天领取了多少张此优惠券 uc5
    • 领取优惠券时间-最后一次使用优惠券时间 uc6
    • uc6/ u5 uc7 正比

    • 用户前第i天领取的此优惠券数目 uc5si

    • 用户后第i天领取的此优惠券数目 uc5ai
    • 用户前7天领取的此优惠券数目 uc8
    • 用户前3天领取的此优惠券数目 uc9
    • uc9/uc8 uc10(若u21为0,则为1)
    • uc4/uc9 uc11
    • 用户后7天领取的此优惠券数目 uc12
    • 用户后3天领取的此优惠券数目 uc13
    • uc13/uc12 uc14
    • uc4/uc13 uc15
    • 按照7/4/2分解训练、预测时间,提取此段窗口时间的特征
    • 7/4/2天此用户在此商店领取的优惠券发放数目 uc16_i
    • 用户前后2/4/7领取的优惠券优惠率排名 uc17_i

算法及模型融合

最初使用RF、GBDT两种模型,GBDT效果优于RF,后期使用了多个GBDT和XGBoost,分别使用不同的参数、不同的正负样本比例以rank的方式进行多模型的融合,效果有微小提升,但是由于计算量的限制没有进一步展开。

模型融合

由于评估指标是计算每个coupon_id核销预测的AUC值,然后所有优惠券的AUC值平均作为最终的评估指标,而rank融合方式对AUC之类的评估指标特别有效,所以采用此方法,公式为:

i=1nWeightiRanki

其中n表示模型的个数, Weighti表示该模型权重,所有权重相同表示平均融合。Ranki表示样本在第i个模型中的升序排名。它可以较快的利用排名融合多个模型之间的差异,而不需要加权融合概率。

应用

基于参数,样本(采样率),特征获得多个模型,得到每个模型的概率值输出,然后以coupon_id分组,把概率转换为降序排名,这样就获得了每个模型的Ranki,然后这里我们使用的是平均融合,Weighti=1/n,这样就获得了最终的一个值作为输出。


线下评估

虽然这次比赛每天有四次评测机会,但是构建线下评估在早期成绩比较差的时候用处很大,早期添加特征之后线下评估基本和线上的趋势保持一致(例如在添加了Label区间的领券特征之后,线下提升十多个百分点,线上也是一致),对于新特征衡量还是有参照性的。后期差距在0.1%级别的时候,就没有参照性了。

线下评估在训练集中采样1/3 or 1/4 or 1/5做线下评估集合,剩下的做为训练集训练模型,并将评估集合中全0或者全1的优惠券ID去掉,然后使用训练的模型对评估集合预测,将预测结果和实际标签作异或取反(相同为1,不同为0),然后算出每个优惠券ID的AUC,最后将每个ID的优惠券AUC取均值就得到最终的AUC。


回顾

这一次比赛学习了很多,包括分布式平台ODPS和机器学习平台实现数据清洗,特征提取,特征选择,分类建模、调参及模型融合等,学习摸索了一套方法,使自己建立了信心,明白还有很多需要学习的地方,之前一直对于算法都是当做一个黑匣子,只会熟悉输入输出直接调用,要深入了解算法,才能突破目前的瓶颈有所提高。
同时我觉得大家一起探讨交流也很重要,一个人做着做着就容易走偏,纯属个人看法。

CSDN博客链接:http://blog.csdn.net/shine19930820/article/details/53995369

授人以鱼不如授人以渔:

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

通过GBDT组合的特征作为LR的输入

scikit-learn中的apply() 函数有什么作用? 在最新版本的scikit-learn中,gradient boosting新增了apply()方法。如图: 请问,这个函数功能是和 ...

离线环境下通过Anaconda安装相关包

直接去http://anaconda.org,或https://repo.continuum.io/pkgs/free/win-64/ 下载需要的包,然后conda install /path/**...

GBDT基本理论及利用GBDT组合特征的具体方法(收集的资料)

最近两天在学习GBDT,看了一些资料,了解到GBDT由很多回归树构成,每一棵新回归树都是建立在上一棵回归树的损失函数梯度降低的方向。 以下为自己的理解,以及收集到的觉着特别好的学习资料。 ...

『 机器学习笔记』最优化方法

最优化方法是研究在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最优的一些学科的总称。 机器学习的问题大多可以建模成一种最优化模型求解,常见最优化方法有梯度下降法,牛顿法和拟牛顿法...

随机梯度下降(Stochastic gradient descent)和 批量梯度下降(Batch gradient descent )的公式对比、实现对比

梯度下降(GD)是最小化风险函数、损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正。 下面的h(...

GBDT参考 (GBDT+LR)

GBDT基本理论及利用GBDT组合特征的具体方法(收集的资料) http://blog.csdn.net/chris__kk/article/details/51384276 http://b...

GBDT+LR特征融合的例子

sklearn直接使用.apply即可完成,下面看下简单的例子。 import pandas as pd from sklearn.linear_model import LogisticRegres...

『数据挖掘十大算法 』笔记一:决策树

数据挖掘Top 10算法 决策树模型与学习 特征选择 信息增益 熵entropy 条件熵 信息增益 信息增益算法 信息增益比 决策树生成 ID3算法 C45算法 决策树剪枝 先验设定控制复杂度 损失函...

CTR预估中GBDT与LR融合方案

1、 背景 CTR预估(Click-Through Rate Prediction)是互联网计算广告中的关键环节,预估准确性直接影响公司广告收入。CTR预估中用的最多的模型是LR(Logistic R...

GBDT原理及利用GBDT构造新的特征-Python实现

Gradient BoostingGradient Boosting是一种Boosting的方法,它主要的思想是,每一次建立模型是在之前建立模型损失函数的梯度下降方向。损失函数是评价模型性能(一般为拟...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)