机器学习入门心得——书籍、课程推荐

MOOCs

Coursera 上 Andrew Ng 的 Machine Learning 课程:适合 Machine Learning 的入门,我当时是研一的上学期听的这个课,学校的课还比较多,那时是完全按照他的课程日历来学的,每周都有Deadline,一共学习了3个月,就是通过这个课对机器学习有了一个整体的理解,学习课程的时候一定要记得做Assignment,非常有帮助。

研一下学期听了师兄们推荐的台湾大学的機器學習基石 (Machine Learning Foundations)和機器學習技法 (Machine Learning Techniques),内容比Andrew Ng的机器学习稍微详细,老师在讲算法的时候会提到台湾大学用这个算法可以做什么以及参加的KDD比赛。

还有一个推荐的课程是百度的机器学习课程,讲师是余凯&张潼

Stanford cs229 : Machine Learning

BOOKs

南大周志华教授的机器学习:这本书是16年新出的,内容比较新,中国人写的看起来比较舒服,内容主要是综述形式的

深度学习是一门涉及大量数学、算法及计算机技术的学科,初学者可以从一些基础知识入手,逐步深入理解模型结构和训练技巧等复杂内容。下面我会为你推荐几份适合新手起步的学习资源: ### 入门书籍 1. **《Deep Learning》 by Ian Goodfellow, Yoshua Bengio and Aaron Courville** - 这本书被誉为“深度学习圣经”,涵盖了从基本理论到实际应用的各种主题,虽然有一定难度但是非常全面; 2. **《动手学深度学习》(Dive into Deep Learning)** - 中文版由阿里云翻译出版发行,在线版本免费提供给读者,并且附带了丰富的实例代码。 ### 视频课程 1. 吴恩达教授在Coursera平台开设的专项课程——[Machine Learning Yearning](https://www.coursera.org/specializations/deep-learning) 和 [Neural Networks and Deep Learning](https://www.coursera.org/learn/neural-networks-deep-learning),这两套视频教程系统地介绍了神经网络的基础知识以及如何构建高效的机器学习项目; ### 实践练习 - **Kaggle竞赛网站** 提供了很多真实场景下的数据集用于参赛者尝试建立预测模型,通过参与比赛可以快速积累实战经验并与其他爱好者交流心得; ### 开源框架文档指南 熟悉主流开源工具如TensorFlow、PyTorch等也是非常重要的环节之一。官方提供的API参考手册不仅详尽而且更新及时,对于想要深入了解底层机制的人来说更是不可或缺的好帮手。 希望以上信息能够帮助您顺利开启深度学习之旅!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值