题意:有一块板,规格为h*w,然后有n张海报,每张海报的规格为1*wi,选择贴海报的位置是:尽量高,同一高度,选择尽量靠左的地方。要求输出每张海报的高度位置。
因为最多只有二十万张海报,所以板的最大的长度不会超过二十万,但是要小心,如果板的长度小于h,我们还要用h来建树。起初在查询的时候并不直接去更新它,而是查询找出它的更新位置的后,再写个updata函数去更新,但是我们可以在查询到它的位置的时候,同时去更新当前点的剩余长度,然后回溯更新所有祖先区间。返回它的查询位置的时候,因为左儿子找到的位置是pos1,右儿子找到的位置是pos2,两者都赋初值为0,又因为每次查询只找出一个位置,也就是说pos1和pos2中只有一个被改变,另一个仍保持0,所以返回pos1+pos2是正确的。
/*代码风格更新后*/
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define LL(x) (x<<1)
#define RR(x) (x<<1|1)
#define MID(a,b) (a+((b-a)>>1))
const int N=200005;
struct node
{
int lft,rht,mx;
int mid(){return MID(lft,rht);}
};
int h,w,n;
struct Segtree
{
node tree[N*4];
void build(int lft,int rht,int ind)
{
tree[ind].lft=lft; tree[ind].rht=rht;
tree[ind].mx=w;
if(lft!=rht)
{
int mid=tree[ind].mid();
build(lft,mid,LL(ind));
build(mid+1,rht,RR(ind));
}
}
int updata(int valu,int ind)
{
int lft=tree[ind].lft,rht=tree[ind].rht;
if(lft==rht)
{
tree[ind].mx-=valu;
return lft;
}
else
{
int pos;
if(tree[LL(ind)].mx>=valu) pos=updata(valu,LL(ind));
else pos=updata(valu,RR(ind));
tree[ind].mx=max(tree[LL(ind)].mx,tree[RR(ind)].mx);
return pos;
}
}
}seg;
int main()
{
while(scanf("%d%d%d",&h,&w,&n)!=EOF)
{
int tmp;
seg.build(1,min(N,h),1);
for(int i=0;i<n;i++)
{
scanf("%d",&tmp);
if(seg.tree[1].mx<tmp) puts("-1");
else printf("%d\n",seg.updata(tmp,1));
}
}
return 0;
}
/*代码风格更新前*/
#include <iostream>
#include <cstdio>
using namespace std;
const int N=200005;
int h,w,n;
struct node
{
int left,right,len;
int mid(){return left+(right-left)/2;}
};
struct Segtree
{
node tree[N*4];
void build(int left,int right,int r)
{
tree[r].left=left; tree[r].right=right;
tree[r].len=w;
if(left<right)
{
int mid=tree[r].mid();
build(left,mid,r*2);
build(mid+1,right,r*2+1);
}
}
int query(int len,int r)
{
if(tree[r].left==tree[r].right)
{
tree[r].len-=len;
return tree[r].left;
}
else
{
int pos1=0,pos2=0;
if(len<=tree[r*2].len) pos1=query(len,r*2);
else if(len<=tree[r*2+1].len) pos2=query(len,r*2+1);
tree[r].len=max(tree[r*2].len,tree[r*2+1].len);
return pos1+pos2;
}
}
}seg;
int main()
{
while(scanf("%d%d%d",&h,&w,&n)!=EOF)
{
seg.build(1,min(200000,h),1);
for(int i=0;i<n;i++)
{
int len;
scanf("%d",&len);
if(seg.tree[1].len>=len) printf("%d\n",seg.query(len,1));
else puts("-1");
}
}
return 0;
}