题意:有T给测试数据,每组数据先给一个数字N,接下来的N行里,每行里有6个数字,分别是x1,y1,z1,x2,y2,z2,表示这个长方体x轴方向的范围从x1到x2,y坐标和z坐标类似,求至少有三个长方体相交的体积是多少。
因为Z轴的范围很小,所以我们将Z轴离散化之后,枚举Z[i]和Z[i+1]之间,矩形并时覆盖了三次以上的面积,那么这时候,就可以求出在Z[i]和Z[i+1]之间题目所求的体积,遍历一次Z坐标,也就得出了答案。如果求矩形并时覆盖超过三次的面积,与hdu 1255 覆盖的面积,是很类似的。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
#include <map>
using namespace std;
#define LL(x) (x<<1)
#define RR(x) (x<<1|1)
#define MID(a,b) (a+((b-a)>>1))
typedef long long LL;
const int N=2005;
struct CUBE
{
int x1,y1,z1;
int x2,y2,z2;
void get()
{
scanf("%d%d%d",&x1,&y1,&z1);
scanf("%d%d%d",&x2,&y2,&z2);
}
}cube[N];
struct Line
{
int x,y1,y2,flag;
Line(){}
Line(int a,int b,int c,int d)
{ x=a;y1=b;y2=c;flag=d; }
bool operator<(const Line &b)const
{ return x<b.x; }
};
struct node
{
int lft,rht,flag,len[4];
int mid(){return MID(lft,rht);}
void init(){memset(len,0,sizeof(len));}
};
vector<int> y,z;
vector<Line> line;
map<int,int> H;
struct Segtree
{
node tree[N*4];
void calu(int ind)
{
if(tree[ind].flag>=3)
{
tree[ind].len[3]=tree[ind].len[0];
tree[ind].len[2]=tree[ind].len[1]=0;
}
else if(tree[ind].flag==2)
{
tree[ind].len[2]=tree[ind].len[0];
if(tree[ind].lft+1==tree[ind].rht)
{
tree[ind].len[1]=tree[ind].len[3]=0;
}
else
{
tree[ind].len[3]=tree[LL(ind)].len[3]+tree[RR(ind)].len[3]
+tree[LL(ind)].len[2]+tree[RR(ind)].len[2]
+tree[LL(ind)].len[1]+tree[RR(ind)].len[1];
tree[ind].len[1]=0;
tree[ind].len[2]-=tree[ind].len[3];
}
}
else if(tree[ind].flag==1)
{
tree[ind].len[1]=tree[ind].len[0];
if(tree[ind].lft+1==tree[ind].rht)
{
tree[ind].len[2]=tree[ind].len[3]=0;
}
else
{
tree[ind].len[3]=tree[LL(ind)].len[3]+tree[RR(ind)].len[3]
+tree[LL(ind)].len[2]+tree[RR(ind)].len[2];
tree[ind].len[2]=tree[LL(ind)].len[1]+tree[RR(ind)].len[1];
tree[ind].len[1]-=(tree[ind].len[2]+tree[ind].len[3]);
}
}
else
{
if(tree[ind].lft+1==tree[ind].rht)
{
tree[ind].len[1]=tree[ind].len[2]=tree[ind].len[3]=0;
}
else
{
tree[ind].len[3]=tree[LL(ind)].len[3]+tree[RR(ind)].len[3];
tree[ind].len[2]=tree[LL(ind)].len[2]+tree[RR(ind)].len[2];
tree[ind].len[1]=tree[LL(ind)].len[1]+tree[RR(ind)].len[1];
}
}
}
void build(int lft,int rht,int ind)
{
tree[ind].lft=lft; tree[ind].rht=rht;
tree[ind].init(); tree[ind].flag=0;
tree[ind].len[0]=y[rht]-y[lft];
if(lft+1!=rht)
{
int mid=tree[ind].mid();
build(lft,mid,LL(ind));
build(mid,rht,RR(ind));
}
}
void updata(int st,int ed,int ind,int valu)
{
int lft=tree[ind].lft,rht=tree[ind].rht;
if(st<=lft&&rht<=ed) tree[ind].flag+=valu;
else
{
int mid=tree[ind].mid();
if(st<mid) updata(st,ed,LL(ind),valu);
if(ed>mid) updata(st,ed,RR(ind),valu);
}
calu(ind);
}
}seg;
int main()
{
int t,t_cnt=0;
scanf("%d",&t);
while(t--)
{
y.clear(); z.clear(); line.clear(); H.clear();
int n;
scanf("%d",&n);
for(int i=0;i<n;i++)
{
cube[i].get();
y.push_back(cube[i].y1); y.push_back(cube[i].y2);
z.push_back(cube[i].z1); z.push_back(cube[i].z2);
}
printf("Case %d: ",++t_cnt);
if(n<3) {puts("0");continue;}
else
{
sort(y.begin(),y.end());
sort(z.begin(),z.end());
y.erase(unique(y.begin(),y.end()),y.end());
z.erase(unique(z.begin(),z.end()),z.end());
for(int i=0;i<(int)y.size();i++) H[y[i]]=i;
LL res=0;
seg.build(0,(int)y.size()-1,1);
for(int i=0;i<(int)z.size()-1;i++)
{
line.clear();
for(int j=0;j<n;j++)
{
if(cube[j].z1<=z[i]&&cube[j].z2>=z[i+1])
{
line.push_back(Line(cube[j].x1,cube[j].y1,cube[j].y2,1));
line.push_back(Line(cube[j].x2,cube[j].y1,cube[j].y2,-1));
}
}
sort(line.begin(),line.end());
for(int j=0;j<(int)line.size();j++)
{
if(j!=0) res+=(z[i+1]-z[i])*(line[j].x-line[j-1].x)*(LL)seg.tree[1].len[3];
seg.updata(H[line[j].y1],H[line[j].y2],1,line[j].flag);
}
}
printf("%I64d\n",res);
}
}
return 0;
}