hdu3642 线段树长方体体积交

这个题目初看没想法,估计要用到三维线段树,果断和队友先放下了。过了两天,看了前人的思想,简直吊爆了。居然转化为一维的来考虑,主要还是自己不细心,不然根据数据特征也可以推出来的,有思路就好办了,敲出来有个小错误,改了就过了,总体来说还是蛮顺利的。。。。


ACcode:

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#define LL long long
using namespace std;

const int nsize=2222;

int Z[nsize],X[nsize];
int cov[nsize<<2],len1[nsize<<2],len2[nsize<<2],len3[nsize<<2];
LL ans;

struct Rectange
{
    int x1,y1,z1;
    int x2,y2,z2;
}rec[nsize/2];

struct Line
{
    int lx,rx,y;
    int f;
    Line(){}
    Line(int a,int b,int c,int d) : lx(a),rx(b),y(c),f(d){}
    bool operator < (const Line &cmp) const {
        return y<cmp.y;
    }
}line[nsize];

int Fin(int key,int len)
{
    int l=0,r=len;
    while (l<=r)
    {
        int m=(l+r)>>1;
        if (X[m]==key) return m;
        else if (X[m]>key) r=m-1;
        else l=m+1;
    }
    return -1;
}

void PushUp(int rt,int l,int r)
{
    int t1=rt<<1,t2=t1|1;
    if (cov[rt]>=3)
    {
        len3[rt]=X[r+1]-X[l];
        len2[rt]=len1[rt]=0;
    }
    else if (cov[rt]>=2)
    {
        len3[rt]=len1[t1]+len1[t2]+len2[t1]+len2[t2]+len3[t1]+len3[t2];
        len2[rt]=X[r+1]-X[l]-len3[rt];
        len1[rt]=0;
    }
    else if (cov[rt]>=1)
    {
        len3[rt]=len2[t1]+len2[t2]+len3[t1]+len3[t2];
        len2[rt]=len1[t1]+len1[t2];
        len1[rt]=X[r+1]-X[l]-len3[rt]-len2[rt];
    }
    else
    {
        len1[rt]=len1[t1]+len1[t2];
        len2[rt]=len2[t1]+len2[t2];
        len3[rt]=len3[t1]+len3[t2];
    }
}

void update(int rt,int l,int r,int L,int R,int v)
{
    if (L<=l&&r<=R)
    {
        cov[rt]+=v;
        PushUp(rt,l,r);
        return ;
    }
    int m=(l+r)>>1;
    if (L<=m) update(rt<<1,l,m,L,R,v);
    if (R>m)  update(rt<<1|1,m+1,r,L,R,v);
    PushUp(rt,l,r);
}

int main()
{
    int n,i,j,k,nx,ny,p,T,cas=0;
    int x1,x2,y1,y2,z1,z2;
    scanf("%d",&T);
    while (T--)
    {
        scanf("%d",&n);
        for (i=0;i<n;i++)
        {
            scanf("%d%d%d%d%d%d",&rec[i].x1,&rec[i].y1,&rec[i].z1,&rec[i].x2,&rec[i].y2,&rec[i].z2);
            Z[i<<1]=rec[i].z1;  Z[i<<1|1]=rec[i].z2;
        }
        sort(Z,Z+n*2);
        for (k=0,i=1;i<n*2;i++)
            if (Z[i]!=Z[i-1]) Z[++k]=Z[i];
        for (ans=i=0;i<k;i++)
        {
            memset(cov,0,n<<5);
            memset(len1,0,n<<5);
            memset(len2,0,n<<5);
            memset(len3,0,n<<5);
            for (ny=j=0;j<n;j++)
            {
                if (rec[j].z1<=Z[i]&&rec[j].z2>=Z[i+1])
                {
                    X[ny]=rec[j].x1; line[ny++]=Line(rec[j].x1,rec[j].x2,rec[j].y1,1);
                    X[ny]=rec[j].x2; line[ny++]=Line(rec[j].x1,rec[j].x2,rec[j].y2,-1);
                }
            }
            sort(X,X+ny);
            sort(line,line+ny);
            for (nx=0,j=1;j<ny;j++)
                if (X[j]!=X[j-1]) X[++nx]=X[j];
            for (j=0;j<ny-1;j++)
            {
                int L=Fin(line[j].lx,nx);
                int R=Fin(line[j].rx,nx)-1;
                if (L<=R) update(1,0,nx,L,R,line[j].f);
                ans+=1LL*len3[1]*(line[j+1].y-line[j].y)*(Z[i+1]-Z[i]);
            }
        }
        printf("Case %d: %I64d\n",++cas,ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值