BZOJ 1907 树的路径覆盖

题目描述

输入

输出

样例输入

1
7
1 2
2 3
2 4
4 6
5 6
6 7

样例输出

3

题解:比较裸的树形dp。对于任意节点x,只有三种情况,x单独成链,x与子树中的其中一条链成一条链,x与子树中的两条链成一条链。

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 10010
#define inf 0x3f3f3f3f
using namespace std;
int head[N] , to[N << 1] , next[N << 1] , cnt , fa[N] , son[N] , f[N] , g[N];
void add(int x , int y)
{
    to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
void init(int x)
{
    int i;
    for(i = head[x] ; i ; i = next[i])
        if(to[i] != fa[x])
            fa[to[i]] = x , son[x] ++ , init(to[i]);
}
void dfs(int x)
{
    int i , sum = 0 , t = inf;
    for(i = head[x] ; i ; i = next[i])
        if(to[i] != fa[x])
		{
	    dfs(to[i]) ;
		sum += min(f[to[i]] , g[to[i]]) ;//所有儿子节点的成链情况 
		t = min(t , max(f[to[i]] - g[to[i]] , 0));//x与其中的一条链成链 
        } 
    f[x] = sum + min(t , 1);//对于1的情况是x单独成链; 
    if(son[x] < 2) return;
    int m1 = inf , m2 = inf;
    for(i = head[x] ; i ; i = next[i])//寻找x与其中两条链成一条链的情况 
    {
        if(to[i] != fa[x])
        {
            t = max(f[to[i]] - g[to[i]] , 0);
            if(t < m1) m2 = m1 , m1 = t;
            else if(t < m2) m2 = t;
        }
    }
    g[x] = sum + m1 + m2 - 1;
}
int main()
{
    int T;
    scanf("%d" , &T);
    while(T -- )
    {
        memset(head , 0 , sizeof(head));
        memset(son , 0 , sizeof(son));
        memset(f , 0x3f , sizeof(f));
        memset(g , 0x3f , sizeof(g));
        cnt = 0;
        int n , i , x , y;
        scanf("%d" , &n);
        for(i = 1 ; i < n ; i ++ ) scanf("%d%d" , &x , &y) , add(x , y) , add(y , x);
        init(1) , dfs(1);
        printf("%d\n" , min(f[1] , g[1]));
    }
    return 0;
}


题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值