[BZOJ1907]树的路径覆盖(贪心)

版权声明:口胡文章,请谨慎转载╮(╯▽╰)╭ https://blog.csdn.net/Blue_CuSO4/article/details/78079730

题目:

我是超链接

题解:

看上去像网络瘤题?嗯很明显想多了,这可是一棵树啊
然后陷入一脸不可做的状态。。
翻翻翻…..
以某一个点为根的子树,这个点只有两种状态:拐弯(两条简单路径在一个点交汇成一条,折折折)和直上(一条路走到黑)
我们优先满足拐弯的情况,贪心!贪心策略是:只要当前点能成为拐点,就让它成为拐点。也就是说,贪心地将它能连的儿子连起来。因为一个拐点可以使减少2个点,而拉上ta只能减少一个点,所以这个贪心的策略是正确的。
我们对于每个点维护是否已经拐过弯了(因为只有没拐过弯的节点才能继续走到顶)
size[i]表示以i为根节点的子树的最小路径覆盖
这里写图片描述
貌似还有一种树形dp的方法?

代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#define N 10005
using namespace std;
int tot,nxt[N*2],point[N],v[N*2],size[N];bool vis[N];
void cl(){tot=0; memset(point,0,sizeof(point));memset(size,0,sizeof(size));memset(vis,0,sizeof(vis));}
void addline(int x,int y)
{
    ++tot; nxt[tot]=point[x]; point[x]=tot; v[tot]=y;
    ++tot; nxt[tot]=point[y]; point[y]=tot; v[tot]=x;
}
void dfs(int x,int fa)
{
    int cnt=0;
    size[x]=1;
    for (int i=point[x];i;i=nxt[i])
      if (v[i]!=fa)
      {
        dfs(v[i],x);
        size[x]+=size[v[i]];
        if (!vis[v[i]]) cnt++;
      }
    if (cnt>=2) size[x]-=2,vis[x]=true;//可以被当做一个拐点,折起来节点数-2 
    else if (cnt==1) size[x]--;//只能和这个点一起走到顶 
}
int main()
{
    int T,i,n;
    scanf("%d",&T);
    while (T--)
    {
        cl();
        scanf("%d",&n);
        for (i=1;i<n;i++)
        {
            int x,y;
            scanf("%d%d",&x,&y);
            addline(x,y);
        }
        dfs(1,0);
        printf("%d\n",size[1]);
    }
}
展开阅读全文

没有更多推荐了,返回首页